Unknown

Dataset Information

0

A Robust Parameter-free Thresholding Method for Image Segmentation.


ABSTRACT: In this work we presented a new parameter-free thresholding method for image segmentation. In separating an image into two classes, the method employs an objective function that not only maximizes the between-class variance but also the distance between the mean of each class and the global mean of the image. The design of the objective function aims to circumvent the challenge that many existing techniques encounter when the underlying two classes have very different sizes or variances. Advantages of the new method are two-fold. First, it is parameter-free, meaning that it can generate consistent results. Second, the new method has a simple form that makes it easy to adapt to different applications. We tested and compared the new method with the standard Otsu method, the maximum entropy method, and the 2D Otsu method on simulated and real biomedical and photographic images and found the new method can achieve a more accurate and robust performance.

SUBMITTER: Cao X 

PROVIDER: S-EPMC6640864 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Robust Parameter-free Thresholding Method for Image Segmentation.

Cao Xinhua X   Li Taihao T   Li Hongli H   Xia Shunren S   Ren Fuji F   Sun Ye Y   Xu Xiaoyin X  

IEEE access : practical innovations, open solutions 20181220


In this work we presented a new parameter-free thresholding method for image segmentation. In separating an image into two classes, the method employs an objective function that not only maximizes the between-class variance but also the distance between the mean of each class and the global mean of the image. The design of the objective function aims to circumvent the challenge that many existing techniques encounter when the underlying two classes have very different sizes or variances. Advanta  ...[more]

Similar Datasets

| S-EPMC6953780 | biostudies-literature
| S-EPMC8247631 | biostudies-literature
| S-EPMC6585648 | biostudies-literature
2004-03-16 | GSE1054 | GEO
| S-EPMC10984966 | biostudies-literature
| S-EPMC5409344 | biostudies-literature
| S-EPMC6115396 | biostudies-literature
| S-EPMC5704426 | biostudies-literature
| S-EPMC6461524 | biostudies-literature
| S-EPMC4854282 | biostudies-literature