Unknown

Dataset Information

0

Iron and pH Regulating the Photochemical Mineralization of Dissolved Organic Carbon.


ABSTRACT: Solar radiation mineralizes dissolved organic matter (DOM) to dissolved inorganic carbon through photochemical reactions (DIC photoproduction) that are influenced by iron (Fe) and pH. This study addressed as to what extent Fe contributes to the optical properties of the chromophoric DOM (CDOM) and DIC photoproduction at different pH values. We created the associations of Fe and DOM (Fe-DOM) that cover the range of loadings of Fe on DOM and pH values found in freshwaters. The introduced Fe enhanced the light absorption by CDOM independent of pH. Simulated solar irradiation decreased the light absorption by CDOM (i.e., caused photobleaching). Fe raised the rate of photobleaching and steepened the spectral slopes of CDOM in low pH but resisted the slope steepening in neutral to alkaline pH. The combination of a low pH (down to pH 4) and high Fe loading on DOM (up to 3.5 ?mol mg DOM-1) increased the DIC photoproduction rate and the apparent quantum yields for DIC photoproduction up to 7-fold compared to the corresponding experiments at pH >6 or without Fe. The action spectrum for DIC photoproduction shifted toward the visible spectrum range at low pH in the presence of Fe. Our results demonstrated that Fe can contribute to DIC photoproduction by up to 86% and produce DIC even at the visible spectrum range in acidic waters. However, the stimulatory effect of Fe is negligible at pH >7.

SUBMITTER: Gu Y 

PROVIDER: S-EPMC6641020 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Iron and pH Regulating the Photochemical Mineralization of Dissolved Organic Carbon.

Gu Yufei Y   Lensu Anssi A   Perämäki Siiri S   Ojala Anne A   Vähätalo Anssi V AV  

ACS omega 20170509 5


Solar radiation mineralizes dissolved organic matter (DOM) to dissolved inorganic carbon through photochemical reactions (DIC photoproduction) that are influenced by iron (Fe) and pH. This study addressed as to what extent Fe contributes to the optical properties of the chromophoric DOM (CDOM) and DIC photoproduction at different pH values. We created the associations of Fe and DOM (Fe-DOM) that cover the range of loadings of Fe on DOM and pH values found in freshwaters. The introduced Fe enhanc  ...[more]

Similar Datasets

| S-EPMC5889133 | biostudies-literature
| S-EPMC10275504 | biostudies-literature
| S-EPMC10477716 | biostudies-literature
| S-EPMC7490696 | biostudies-literature
| S-EPMC5618313 | biostudies-literature
| S-EPMC9303698 | biostudies-literature
| S-EPMC4447701 | biostudies-literature
| S-EPMC3247214 | biostudies-literature
| S-EPMC7242472 | biostudies-literature
| S-EPMC9298845 | biostudies-literature