Unknown

Dataset Information

0

Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors.


ABSTRACT: Flexible batteries and supercapacitors (SCs) are expected to play a crucial role in energy storage and management in portable electronic devices. In addition, use of materials based on renewable resources would allow for more affordable and sustainable gadgets. In this context, eggshell membranes (ESMs) represent a promising functional platform for production of high-performance electronic components. In this work, we use ESMs for preparing flexible SCs through the incorporation of carbon nanotubes and subsequent in situ polymerization of polypyrrole, producing a highly conductive nanostructure characterized by a porous surface that exhibits both faradic and nonfaradic mechanisms for charge storage. We have found that by controlling the conducting polymer/carbon derivative relative concentration, one can maximize the corresponding capacitance to attain values up to the order 564.5 mF/cm2 (areal capacitance), 24.8 F/cm3 (volumetric capacitance), and 357.9 F/g (gravimetric capacitance). These bioinspired flexible devices exhibit a capacitance retention of 60% after 4000 cycles of charge/discharge and present negligible aging even after 500 bending repetitions (at a density of current 5 mA/cm2). The successful use of ESM-based electrodes in association with carbon derivatives/conducting polymers confirm that the exploit of biological materials offers a promising perspective for the development of new ecofriendly electronic devices.

SUBMITTER: Alcaraz-Espinoza JJ 

PROVIDER: S-EPMC6641116 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors.

Alcaraz-Espinoza José Jarib JJ   de Melo Celso Pinto CP   de Oliveira Helinando Pequeno HP  

ACS omega 20170621 6


Flexible batteries and supercapacitors (SCs) are expected to play a crucial role in energy storage and management in portable electronic devices. In addition, use of materials based on renewable resources would allow for more affordable and sustainable gadgets. In this context, eggshell membranes (ESMs) represent a promising functional platform for production of high-performance electronic components. In this work, we use ESMs for preparing flexible SCs through the incorporation of carbon nanotu  ...[more]

Similar Datasets

| S-EPMC8694920 | biostudies-literature
| S-EPMC10610487 | biostudies-literature
| S-EPMC9055932 | biostudies-literature
| S-EPMC3722565 | biostudies-literature
| S-EPMC10609474 | biostudies-literature
| S-EPMC7114166 | biostudies-literature
| S-EPMC5374445 | biostudies-literature
| S-EPMC5979759 | biostudies-literature
| S-EPMC7075248 | biostudies-literature
| S-EPMC10006981 | biostudies-literature