Unknown

Dataset Information

0

Evaluation of Single Hydrogel Nanofiber Mechanics Using Persistence Length Analysis.


ABSTRACT: Polyelectrolyte hydrogel fibers can mimic the extracellular matrix and be used for tissue scaffolding. Mechanical properties of polyelectrolyte nanofibers are crucial in manipulating cell behavior, which metal ions have been found to enable tuning. While metal ions play an important role in manipulating the mechanical properties of the fibers, evaluating the mechanical properties of a single hydrated hydrogel fiber remains a challenging task and a more detailed understanding of how ions modulate the mechanical properties of individual polyelectrolyte polymers is still lacking. In this study, dark-field microscopy and persistence length analysis help directly evaluate fiber mechanics using electrospun fibers of poly(acrylic acid) (PAA), chitosan (CS), and ferric ions as a model system. By comparing the persistence length and estimated Young's modulus of different nanofibers, we demonstrate that persistence length analysis is a viable approach to evaluate mechanical properties of hydrated fibers. Ferric ions were found to create shorter and stiffer nanofibers, with Young's modulus estimated at a few kilopascals. Ferric ions, at low concentration, reduce the Young's modulus of PAA and PAA/CS fibers through the interaction between ferric ions and carboxylate groups. Such interaction was further supported by nanoscale infrared spectroscopy studies of PAA and PAA/CS fibers with different concentrations of ferric ions.

SUBMITTER: Diaz AM 

PROVIDER: S-EPMC6643519 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of Single Hydrogel Nanofiber Mechanics Using Persistence Length Analysis.

Diaz Angie M AM   Zhang Zeyang Z   Lee Briana B   Luna Felix M Hernandez FMH   Li Sip Yuen Yee YY   Lu Xiaoyan X   Heidings James J   Tetard Laurene L   Zhai Lei L   Kang Hyeran H  

ACS omega 20181226 12


Polyelectrolyte hydrogel fibers can mimic the extracellular matrix and be used for tissue scaffolding. Mechanical properties of polyelectrolyte nanofibers are crucial in manipulating cell behavior, which metal ions have been found to enable tuning. While metal ions play an important role in manipulating the mechanical properties of the fibers, evaluating the mechanical properties of a single hydrated hydrogel fiber remains a challenging task and a more detailed understanding of how ions modulate  ...[more]

Similar Datasets

| S-EPMC10536158 | biostudies-literature
| S-EPMC10048562 | biostudies-literature
| S-EPMC3380901 | biostudies-literature
| S-EPMC2819830 | biostudies-literature
| S-EPMC4462992 | biostudies-literature
| S-EPMC5641218 | biostudies-literature
| S-EPMC10840349 | biostudies-literature
| S-EPMC8343108 | biostudies-literature
2024-01-28 | GSE165702 | GEO
| S-EPMC2749329 | biostudies-literature