ABSTRACT: Crystal structures are reported for bicyclic 3-CF3C6H4CN5S3 and monocyclic 3-CF3C6H4CN3S2, the latter of which is strongly dimerized in a cis-cofacial geometry [3-CF3C6H4CN3S2]2. The title compounds have previously been characterized in solution by NMR, displaying spectra that are consistent with the structure of [3-CF3C6H4CN3S2]2 in the crystal with anti-oriented CF3 substituents. The interannular binding was investigated using density functional theory (DFT) methods. However, the DFT-optimized geometry spreads the aryl rings too far apart (centroid-centroid distances of ≥4.353 Å versus experimental distance of 3.850 Å). Significant improvements are obtained with dispersion-corrected DFT functionals B3LYP-D3, B3LYP-D3BJ, M062X, and APFD using the 6-311+G(2d,p) basis set. However, all of these overbind the aryl rings with centroid-centroid distances of 3.612, 3.570, 3.526, and 3.511 Å, respectively. After selecting B3LYP-D3BJ/6-311+G(2d,p) as the best method, five alternative dimer geometries were tested, and all were found to be binding; however, anti cofacial-4 (matching the structure in the solid state) is the most stable. Computed energies of the remainder are as follows: +7.0 kJ mol-1 (syn-cofacial-5), +26.7 kJ mol-1 (anti-cofacial-64), +27.0 kJ mol-1 (syn-cofacial-150), +102.0 kJ mol-1 (S,S-antarafacial), and +103.7 kJ mol-1 (S,N-antarafacial), where the suffixes are torsional angles around the CN3S2 thiazyl ring centroids. The binding in the four most stable cofacial dimers may be described by "double pancake bonding".