Unknown

Dataset Information

0

3D Printed UV-Visible Cuvette Adapter for Low-Cost and Versatile Spectroscopic Experiments.


ABSTRACT: Ultraviolet-visible (UV-vis) spectroscopy represents one of the most popular analytical techniques in chemical research labs. A variety of vendors provide instruments that are suited for the analysis of liquid samples at moderate concentrations. However, to accommodate more specialized experiments, expensive accessories are required and often do not fit the specific needs of experimental scientists. In this work, we present a generalized adapter that can be 3D printed and used with existing spectrometers to enable a wide array of experiments to be performed. In the case of liquid samples, we provide a method for dramatically reducing the price of a quartz cuvette with minimal impact on performance. Through simple modification of the design, cuvettes with various path lengths can be prepared. Additionally, we illustrate the ability to turn any sample container into a working cuvette to simplify experimental protocols, prevent contamination risks, and further reduce costs. This strategy also enables gaseous and solid samples to be evaluated easily and reproducibly. Furthermore, we demonstrate how this concept can be extended to interface additional instrumentation with a commercial UV-vis spectrometer. All of the digital designs are provided under a creative commons license to enable other researchers to modify and adapt the designs for their unique experimental requirements.

SUBMITTER: Whitehead HD 

PROVIDER: S-EPMC6644542 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D Printed UV-Visible Cuvette Adapter for Low-Cost and Versatile Spectroscopic Experiments.

Whitehead Heather D HD   Waldman Julia V JV   Wirth Denise M DM   LeBlanc Gabriel G  

ACS omega 20170925 9


Ultraviolet-visible (UV-vis) spectroscopy represents one of the most popular analytical techniques in chemical research labs. A variety of vendors provide instruments that are suited for the analysis of liquid samples at moderate concentrations. However, to accommodate more specialized experiments, expensive accessories are required and often do not fit the specific needs of experimental scientists. In this work, we present a generalized adapter that can be 3D printed and used with existing spec  ...[more]

Similar Datasets

| S-EPMC9443467 | biostudies-literature
| S-EPMC7688980 | biostudies-literature
| S-EPMC9364600 | biostudies-literature
| S-EPMC4822857 | biostudies-literature
| S-EPMC8709156 | biostudies-literature
| S-EPMC7869629 | biostudies-literature
| S-EPMC8422993 | biostudies-literature
| S-EPMC10502633 | biostudies-literature
| S-EPMC6610678 | biostudies-literature
| S-EPMC7243341 | biostudies-literature