Project description:In this study, we investigated the catalytic properties of various Heusler alloys for the hydrogenation of propyne and the oxidation of carbon monoxide. For propyne hydrogenation, Co2FeGe alloy showed a higher activity than that of elemental Co, where neither Fe nor Ge showed any activity. This clearly indicates an alloying effect. For the oxidation of carbon monoxide, although most alloys showed a significant change in catalytic activity during measurement due to an irreversible oxidation of the alloy, Co2TiSn alloy showed a very small change. The results indicate that the catalytic activity and stability of a Heusler alloy can be tuned by employing an appropriate set of elements.
Project description:Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.
Project description:This paper contains data and results from Density Functional Theory (DFT) investigation of 423 distinct X2YZ ternary full Heusler alloys, where X and Y represent elements from the D-block of the periodic table and Z signifies element from main group. The study encompasses both "regular" and "inverse" Heusler phases of these alloys for a total of 846 potential materials. For each specific alloy and each phase, a range of information is provided including total energy, formation energy, lattice constant, total and site-specific magnetic moments, spin polarization as well as total and projected density of electronic states. The aim of creating this dataset is to provide fundamental theoretical insights into ternary X2YZ Heusler alloys for further theoretical and experimental analysis.
Project description:In this work, two kinds of competition between different Heusler structure types are considered, one is the competition between XA and L21 structures based on the cubic system of full-Heusler alloys, Pd2 YZ (Y = Co, Fe, Mn; Z = B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb). Most alloys prefer the L21 structure; that is, Pd atoms tend to occupy the a (0, 0, 0) and c (0.5, 0.5, 0.5) Wyckoff sites, the Y atom is generally located at site b (0.25, 0.25, 0.25), and the main group element Z has a preference for site d (0.75, 0.75, 0.75), meeting the well known site-preference rule. The difference between these two cubic structures in terms of their magnetic and electronic properties is illustrated further by their phonon dispersion and density-of-states curves. The second type of competition that was subjected to systematic study was the competitive mechanism between the L21 cubic system and its L10 tetragonal system. A series of potential tetragonal distortions in cubic full-Heusler alloys (Pd2 YZ) have been predicted in this work. The valley-and-peak structure at, or in the vicinity of, the Fermi level in both spin channels is mainly attributed to the tetragonal ground states according to the density-of-states analysis. ΔE M is defined as the difference between the most stable energy values of the cubic and tetragonal states; the larger the value, the easier the occurrence of tetragonal distortion, and the corresponding tetragonal structure is stable. Compared with the ΔE M values of classic Mn2-based tetragonal Heusler alloys, the ΔE M values of most Pd2CoZ alloys in this study indicate that they can overcome the energy barriers between cubic and tetragonal states, and possess possible tetragonal transformations. The uniform strain has also been taken into consideration to further investigate the tetragonal distortion of these alloys in detail. This work aims to provide guidance for researchers to further explore and study new magnetic functional tetragonal materials among the full-Heusler alloys.
Project description:Rapidly quenched ternary Ni-Mn-T (T?=?In, Sn) alloys exhibit features associated with magnetic skyrmions, so that XRD, TEM, EDS, SAED and HREM investigations were carried out for structural characterization on the two alloy systems. In this paper, we report a new type of Mn-rich Heusler compound with a cubic unit cell, a?=?0.9150?nm in Ni-Mn-In and a?=?0.9051?nm in Ni-Mn-Sn, which coexist with a Ni-rich full-Heusler compound with defects, a?=?0.6094?nm in Ni-Mn-In and a?=?0.6034?nm in Ni-Mn-Sn. A further analysis of the experimental results reveals a close structural relationship between these two compounds.
Project description:Topologically non-trivial electronic structure is a feature of many rare-earth half-Heusler alloys, which host atoms with high spin-orbit coupling bringing in the non-triviality. In this article, using the first-principles simulations, rare-earth half-Heusler YPdBi, ScPdBi, LaPdBi, LuPdBi, YPtBi and LuPtBi alloys are studied under strain to reveal multiple band inversions associated with topological phase transitions. From our simulations we find that, as a result of first band-inversion, the Brillouin zone of the diamagnetic half-Heusler alloys hosts eight triple points whereas, the second band inversion causes the emergence of sixteen more triple points. These band-inversions are observed to be independent of the spin-orbit coupling and are the reason behind increasing occupation of bismuth 7s orbitals as volume of the unit cell increases. The surface electronic transport in different triple point semi-metallic phases is found to evolve under strain, as the number of Fermi arcs change due to multiple band inversions. Once the second band inversion occurs, further application of tensile strain does not increase the number of triple points and Fermi arcs. However, increasing tensile strain (or decreasing compressive strain) pushes the triple point crossing to higher momenta, making them more effective as source of highly mobile electrons. These observations make a pathway to tune the bulk as well as surface transport through these semi-metals by application of tensile or compressive strain depending on the unstrained relative band-inversion strength of the material.
Project description:Full-Heusler alloys (fHAs) exhibit high mechanical strength with earth-abundant elements, but their metallic properties tend to display small electron diffusion thermopower, limiting potential applications as excellent thermoelectric (TE) materials. Here, it is demonstrated that the Co-based fHAs Co2 XAl (X = Ti, V, Nb) exhibit relatively high thermoelectric performance due to spin and charge coupling. Thermopower contributions from different magnetic mechanisms, including spin fluctuation and magnon drag are extracted. A significant contribution to thermopower from magnetism compared to that from electron diffusion is demonstrated. In Co2 TiAl, the contribution to thermopower from spin fluctuation is higher than that from electron diffusion, resulting in an increment of 280 µW m-1 K-2 in the power factor value. Interestingly, the thermopower contribution from magnon drag can reach up to -47 µV K-1 , which is over 2400% larger than the electron diffusion thermopower. The power factor of Co2 TiAl can reach 4000 µW m-1 K-2 which is comparable to that of conventional semiconducting TE materials. Moreover, the corresponding figure of merit zT can reach ≈0.1 at room temperature, which is significantly larger than that of traditional metallic materials. The work shows a promising unconventional way to create and optimize TE materials by introducing magnetism.
Project description:Heusler alloys (X 2 YZ) are well-established intermetallic compound materials in various fields because their function can be precisely adjusted by elemental substitution (e.g., X 2 YZ 1-x Z' x ). Although intermetallic compound catalysts started attracting attention recently, catalysis researchers are not familiar with Heusler alloys. We report their potential as novel catalysts focusing on the selective hydrogenation of alkynes. We found that Co2MnGe and Co2FeGe alloys have great alkene selectivity. Mutual substitution of Mn and Fe (Co2Mn x Fe1-x Ge) enhanced the reaction rate without changing selectivity. The substitution of Ga for Ge decreased the selectivity but increased the reaction rate monotonically with Ga composition. Elucidation of these mechanisms revealed that the fine tuning of catalytic properties is possible in Heusler alloys by separately using ligand and ensemble effects of elemental substitution.
Project description:Based on first-principles calculations, for Heusler alloys Pd2CrZ (Z = Al, Ga, In, Tl, Si, Sn, P, As, Sb, Bi, Se, Te, Zn), the effect of Zn doping on their phase transition and electronic structure has been studied in this work. These alloys can be divided into two classes: (i) all-d-metal Heusler Pd2CrZn and (ii) other normal Heusler alloys Pd2CrZ (Z = Al, Ga, In, Tl, Si, Sn, P, As, Sb, Bi, Se, Te). For all-d-metal Heusler alloy Pd2CrZn, transition metal element Zn behaves like a main group element due to its full 3d occupied state, and therefore the Zn atoms tend to occupy Wyckoff sites D (0.75, 0.75, 0.75) instead of replacing Pd atoms at A sites (0, 0, 0). The stable tetragonal L10 state is obtained via tetragonal deformation and the L10 stable state can be tuned by the uniform strain. The stability of the tetragonal state is analyzed and proved via calculation of the density of states (DOSs) and the phonon spectrum. For the series of normal Heusler alloys Pd2CrZ, doping with Zn atoms can induce or strengthen the martensitic transformation, or regulate the large c/a ratios to a more reasonable range. It is hoped that this work can provide some guidance for further studies of the relationship between all-d-metal and normal Heusler alloys in the future.
Project description:Research in functional magnetic materials often employs thin films as model systems for finding new chemical compositions with promising properties. However, the scale-up of thin films towards bulk-like structures is challenging, since the material synthesis conditions are entirely different for thin films and e.g. rapid quenching methods. As one of the consequences, the type and degree of order in thin films and melt-spun ribbons are usually different, leading to different magnetic properties. In this work, using the example of magnetocaloric Ni-Co-Mn-Al melt-spun ribbons and thin films, we show that the excellent functional properties of the films can be reproduced also in ribbons, if an appropriate heat treatment is applied, that installs the right degree of order in the ribbons. We show that some chemical disorder is needed to get a pronounced and sharp martensitic transition. Increasing the order with annealing improves the magnetic properties only up to a point where selected types of disorder survive, which in turn compromise the magnetic properties. These findings allow us to understand the impact of the type and degree of disorder on the functional properties, paving the way for a faster transfer of combinatorial thin film research towards bulk-like materials for magnetic Heusler alloys.