Unknown

Dataset Information

0

Preparation and Capacity-Fading Investigation of Polymer-Derived Silicon Carbonitride Anode for Lithium-Ion Battery.


ABSTRACT: Polymer-derived silicon carbonitride (SiCN) materials have been synthesized via pyrolyzing from five poly(silylcarbondiimide)s with different contents of carbon (labeled as 1-5#). The morphological and structural measurements show that the SiCN materials are mixtures of nanocrystals of SiC, Si3N4, and graphite. The SiCN materials have been used as anodes for lithium-ion batteries. Among the five polymer-derived SiCN materials, 5#SiCN, derived from dichloromethylvinylsilane and di-n-octyldichlorosilane, has the best cycle stability and a high-rate performance at the low cutoff voltage of 0.01-1.0 V. In lithium-ion half-cells, the specific delithiation capacity of 5#SiCN anode still remains at 826.7 mA h g-1 after 100 charge/discharge cycles; it can even deliver the capacity above 550 mA h g-1 at high current densities of 1.6 and 2 A g-1. In lithium-ion full cells, 5#SiCN anode works well with LiNi0.6Co0.2Mn0.2O2 commercial cathode. The outstanding electrochemical performance of 5#SiCN anode is attributed to two factors: (1) the formation of a stable and compact solid electrolyte interface layer on the anode surface anode, which protects the electrode from cracking during the charge/discharge cycle; and (2) a large amount of carbon component and the less Si3N4 phase in the 5#SiCN structure, which provides an electrochemical reactive and conductive environment in the SiCN structure, benefit the lithiation/delithiation process. In addition, we explore the reason for the capacity fading of these SiCN anodes.

SUBMITTER: Feng Y 

PROVIDER: S-EPMC6645351 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Preparation and Capacity-Fading Investigation of Polymer-Derived Silicon Carbonitride Anode for Lithium-Ion Battery.

Feng Yan Y   Dou Shuming S   Wei Yuzhen Y   Zhang Yuliang Y   Song Xiangyun X   Li Xifei X   Battaglia Vincent S VS  

ACS omega 20171117 11


Polymer-derived silicon carbonitride (SiCN) materials have been synthesized via pyrolyzing from five poly(silylcarbondiimide)s with different contents of carbon (labeled as 1-5#). The morphological and structural measurements show that the SiCN materials are mixtures of nanocrystals of SiC, Si<sub>3</sub>N<sub>4</sub>, and graphite. The SiCN materials have been used as anodes for lithium-ion batteries. Among the five polymer-derived SiCN materials, 5#SiCN, derived from dichloromethylvinylsilane  ...[more]

Similar Datasets

| S-EPMC8789978 | biostudies-literature
| S-EPMC8457143 | biostudies-literature
| S-EPMC5452304 | biostudies-other
| S-EPMC8492725 | biostudies-literature
| S-EPMC3884641 | biostudies-literature
| S-EPMC6124086 | biostudies-literature
| S-EPMC10774241 | biostudies-literature
| S-EPMC5960690 | biostudies-other
| S-EPMC6523080 | biostudies-other
| S-EPMC10023782 | biostudies-literature