Unknown

Dataset Information

0

Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis.


ABSTRACT: Realizing quantitative surface-enhanced Raman scattering (SERS) analysis is extremely helpful and challenging. Here, we utilize a facile method to synthesize spiked plasmonic nanorods with an interior gap. The Raman signal from the molecules embedded in the gap can be dramatically enhanced, leading to strong, stable, and reproducible SERS signals that can be used as an internal reference for quantitative SERS analysis. We demonstrate that the rough exterior surface has a good performance in enhancing the Raman signal of polycyclic aromatic hydrocarbon molecules adsorbed on the surface. The result shows that this method is applicable for a large range of analyte concentrations and there is an excellent linear relationship between the SERS intensity ratio and the analyte concentration (0.5-100 ?M).

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC6645439 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis.

Zhang Yang Y   Li Chen C   Fakhraai Zahra Z   Moosa Basem B   Yang Peng P   Khashab Niveen M NM  

ACS omega 20181030 10


Realizing quantitative surface-enhanced Raman scattering (SERS) analysis is extremely helpful and challenging. Here, we utilize a facile method to synthesize spiked plasmonic nanorods with an interior gap. The Raman signal from the molecules embedded in the gap can be dramatically enhanced, leading to strong, stable, and reproducible SERS signals that can be used as an internal reference for quantitative SERS analysis. We demonstrate that the rough exterior surface has a good performance in enha  ...[more]

Similar Datasets

| S-EPMC8141369 | biostudies-literature
| S-EPMC9893265 | biostudies-literature
| S-EPMC4323660 | biostudies-literature
| S-EPMC3810658 | biostudies-literature
| S-EPMC4501901 | biostudies-literature
| S-EPMC5379060 | biostudies-literature
| S-EPMC7564787 | biostudies-literature
| S-EPMC9063784 | biostudies-literature
| S-EPMC10391707 | biostudies-literature
| S-EPMC7403429 | biostudies-literature