Unknown

Dataset Information

0

Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia.


ABSTRACT:

Background

Measures of malaria burden using microscopy and rapid diagnostic tests (RDTs) in cross-sectional household surveys may incompletely describe the burden of malaria in low-transmission settings. This study describes the pattern of malaria transmission in Ethiopia using serological antibody estimates derived from a nationwide household survey completed in 2015.

Methods

Dried blood spot (DBS) samples were collected during the Ethiopian Malaria Indicator Survey in 2015 from malarious areas across Ethiopia. Samples were analysed using bead-based multiplex assays for IgG antibodies for six Plasmodium antigens: four human malaria species-specific merozoite surface protein-1 19kD antigens (MSP-1) and Apical Membrane Antigen-1 (AMA-1) for Plasmodium falciparum and Plasmodium vivax. Seroprevalence was estimated by age, elevation and region. The seroconversion rate was estimated using a reversible catalytic model fitted with maximum likelihood methods.

Results

Of the 10,278 DBS samples available, 93.6% (9622/10,278) had valid serological results. The mean age of participants was 15.8 years and 53.3% were female. National seroprevalence for antibodies to P. falciparum was 32.1% (95% confidence interval (CI) 29.8-34.4) and 25.0% (95% CI 22.7-27.3) to P. vivax. Estimated seroprevalences for Plasmodium malariae and Plasmodium ovale were 8.6% (95% CI 7.6-9.7) and 3.1% (95% CI 2.5-3.8), respectively. For P. falciparum seroprevalence estimates were significantly higher at lower elevations (ConclusionUsing multiplex serology assays, this study explored the cumulative malaria burden and regional dynamics of the four human malarias in Ethiopia. High malaria burden was observed in the northwest compared to the east. High transmission in the Gambela and Benishangul-Gumuz Regions and the neglected presence of P. malariae and P. ovale may require programmatic attention. The use of a multiplex assay for antibody detection in low transmission settings has the potential to act as a more sensitive biomarker.

SUBMITTER: Assefa A 

PROVIDER: S-EPMC6647069 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Measures of malaria burden using microscopy and rapid diagnostic tests (RDTs) in cross-sectional household surveys may incompletely describe the burden of malaria in low-transmission settings. This study describes the pattern of malaria transmission in Ethiopia using serological antibody estimates derived from a nationwide household survey completed in 2015.<h4>Methods</h4>Dried blood spot (DBS) samples were collected during the Ethiopian Malaria Indicator Survey in 2015 from  ...[more]

Similar Datasets

| S-EPMC5854460 | biostudies-literature
| S-EPMC6781416 | biostudies-literature
| S-EPMC5465535 | biostudies-literature
| S-EPMC9491827 | biostudies-literature
| S-EPMC6796490 | biostudies-literature
| S-EPMC10079056 | biostudies-literature
| S-EPMC6518452 | biostudies-literature
| S-EPMC7594361 | biostudies-literature
| S-EPMC3835423 | biostudies-literature
| S-EPMC6307738 | biostudies-literature