Bimetallic Nanoparticles Anchored on Core-Shell Support as an Easily Recoverable and Reusable Catalytic System for Efficient Nitroarene Reduction.
Ontology highlight
ABSTRACT: We report an easily recoverable and reusable versatile magnetic catalyst (Fe3O4@CS_AgNi, where CS = chitosan) for organic reduction reactions. The catalytic system is prepared by dispersing AgNi bimetallic nanoparticles on the magnetite core-shell (Fe3O4@CS). The as-synthesized catalyst has been characterized by spectroscopic techniques, such as IR, UV-vis, and X-ray photoelectron spectroscopy (XPS), and analytical tools, such as thermogravimetric analysis, powder X-ray diffraction, Brunauer-Emmett-Teller adsorption, FEG-scanning electron microscopy, high-resolution transmission electron microscopy (HR-TEM), inductively coupled plasma-atomic emission spectroscopy, and magnetic measurements. HR-TEM studies indicate the core-shell structure of Fe3O4@CS and confirm the presence of AgNi nanoparticles on the surface of Fe3O4@CS spheres. IR spectral and XPS studies lend evidence for the occurrence of a strong chemical interaction between the amino groups of CS and AgNi nanoparticles. The nano-catalyst Fe3O4@CS_AgNi rapidly reduces p-nitrophenol to p-aminophenol using NaBH4 as the reductant within a few minutes under ambient conditions (as monitored by UV-visible spectroscopy). The utility of this catalytic system has also been extended to the reduction of other nitroarenes. A strong interaction between Fe3O4@CS and AgNi nanoparticles impedes the leaching of AgNi nanoparticles from the core-shell support, leading to excellent reusability of the catalyst.
SUBMITTER: Antony R
PROVIDER: S-EPMC6648521 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA