Unknown

Dataset Information

0

Image Processing-Based Detection of Pipe Corrosion Using Texture Analysis and Metaheuristic-Optimized Machine Learning Approach.


ABSTRACT: To maintain the serviceability of buildings, the owners need to be informed about the current condition of the water supply and waste disposal systems. Therefore, timely and accurate detection of corrosion on pipe surface is a crucial task. The conventional manual surveying process performed by human inspectors is notoriously time consuming and labor intensive. Hence, this study proposes an image processing-based method for automating the task of pipe corrosion detection. Image texture including statistical measurement of image colors, gray-level co-occurrence matrix, and gray-level run length is employed to extract features of pipe surface. Support vector machine optimized by differential flower pollination is then used to construct a decision boundary that can recognize corroded and intact pipe surfaces. A dataset consisting of 2000 image samples has been collected and utilized to train and test the proposed hybrid model. Experimental results supported by the Wilcoxon signed-rank test confirm that the proposed method is highly suitable for the task of interest with an accuracy rate of 92.81%. Thus, the model proposed in this study can be a promising tool to assist building maintenance agents during the phase of pipe system survey.

SUBMITTER: Hoang ND 

PROVIDER: S-EPMC6657638 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Image Processing-Based Detection of Pipe Corrosion Using Texture Analysis and Metaheuristic-Optimized Machine Learning Approach.

Hoang Nhat-Duc ND   Tran Van-Duc VD  

Computational intelligence and neuroscience 20190711


To maintain the serviceability of buildings, the owners need to be informed about the current condition of the water supply and waste disposal systems. Therefore, timely and accurate detection of corrosion on pipe surface is a crucial task. The conventional manual surveying process performed by human inspectors is notoriously time consuming and labor intensive. Hence, this study proposes an image processing-based method for automating the task of pipe corrosion detection. Image texture including  ...[more]

Similar Datasets

| S-EPMC2585161 | biostudies-literature
| S-EPMC7160894 | biostudies-literature
| S-EPMC6158771 | biostudies-other
| S-EPMC6276531 | biostudies-literature
| S-EPMC6567074 | biostudies-literature
2023-04-01 | GSE226159 | GEO
| S-EPMC6728371 | biostudies-literature
| S-EPMC6820559 | biostudies-literature
| S-EPMC5905914 | biostudies-other
| S-EPMC7610963 | biostudies-literature