ABSTRACT: BACKGROUND:Biting midges in the genus Culicoides (Diptera: Ceratopogonidae) transmit bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) to ruminants, thus exerting a significant economic impact on animal agriculture worldwide. However, very little is known about the larval habitat characteristics of Culicoides species associated with BTV/EHDV transmission, particularly in southeastern USA, limiting the establishment of effective midge control strategies. In this study, we examined the habitat associations of Culicoides species abundant on a commercial cervid farm in Florida, USA and quantified several environmental variables of their habitat to identify the key variables associated with midge abundance. METHODS:Mud/substrate samples from three potential larval habitats on the farm (edges of streams, puddles and seepages) were brought to the laboratory and incubated for adult emergence, and the percentage organic matter, macronutrients, micronutrients, pH, electrical conductivity, moisture and microbial concentrations of the substrate were quantified. RESULTS:Strong habitat associations were observed for Culicoides haematopotus (Malloch) (stream edge), Culicoides stellifer (Coquillett) (puddles) and Culicoides loisae (Jamnback) (stream edge), the most commonly emerging midge species from the samples. Suspected vector species of BTV/EHDV on the property, C. stellifer and Culicoides venustus (Hoffman), emerged mainly from habitats with moderate-high levels of pollution (edges of puddles and seepages) as indicated by the relatively higher concentrations/levels of organic matter, nutrients and other environmental variables in these samples. The emergence of C. insignis was too low to form any meaningful conclusions. For each Culicoides species, only weak positive or negative associations were detected between midge abundance and the various environmental variables quantified. CONCLUSIONS:Habitat associations of Culicoides species abundant on a local cervid/animal farm vary, most likely as a function of certain biotic/abiotic characteristics of the habitat. Further studies across a larger spatial and temporal scale will be needed to experimentally evaluate/identify the key factors more strongly associated with the abundance of target Culicoides species. This information, in the long term, can be potentially exploited to render local habitats unsuitable for midge oviposition/larval development.