Biological motion perception is differentially predicted by Autistic trait domains.
Ontology highlight
ABSTRACT: We tested the relationship between biological motion perception and the Autism-Spectrum Quotient. In three experiments, we indexed observers' performance on a classic left-right discrimination task in which participants were asked to report the facing direction of walkers containing solely structural or kinematics information, a motion discrimination task in which participants were asked to indicate the apparent motion of a (non-biological) random-dot stimulus, and a novel naturalness discrimination task. In the naturalness discrimination task, we systematically manipulated the degree of natural acceleration contained in the stimulus by parametrically morphing between a fully veridical stimulus and one where acceleration was removed. Participants were asked to discriminate the more natural stimulus (i.e., acceleration-containing stimulus) from the constant velocity stimulus. Although we found no reliable associations between overall AQ scores nor subdomain scores with performance on the direction-related tasks, we found a robust association between performance on the biological motion naturalness task and attention switching domain scores. Our findings suggest that understanding the relationship between the Autism Spectrum and perception is a far more intricate problem than previously suggested. While it has been shown that the AQ can be used as a proxy to tap into perceptual endophenotypes in Autism, the eventual diagnostic value of the perceptual task depends on the task's consideration of biological content and demands.
SUBMITTER: Lee KS
PROVIDER: S-EPMC6667460 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA