Recruitment of Intratumoral CD103+ Dendritic Cells by a CXCR4 Antagonist-Armed Virotherapy Enhances Antitumor Immunity.
Ontology highlight
ABSTRACT: Intratumoral dendritic cells play an important role in stimulating cytotoxic T cells and driving antitumor immunity. Using a metastatic ovarian tumor model in syngeneic mice, we explored whether therapy with a CXCR4 antagonist-armed oncolytic vaccinia virus activates endogenous CD103+ dendritic cell responses associated with the induction of adaptive immunity against viral and tumor antigens. The overall goal of this study was to determine whether expansion of CD103+ dendritic cells by the virally delivered CXCR4 antagonist augments overall survival and in situ boosting with a tumor antigen peptide-based vaccine. We found that locoregional delivery of the CXCR4-A-armed virus reduced the tumor load and the immunosuppressive network in the tumor microenvironment, leading to infiltration of CD103+ dendritic cells that were capable of phagocytic clearance of cellular material from virally infected cancer cells. Further expansion of tumor-resident CD103+ DCs by injecting the FMS-related tyrosine kinase 3 ligand, the formative cytokine for CD103+ DCs, provided a platform for a booster immunization with the Wilms tumor antigen 1 peptide-based vaccine delivered intraperitoneally with polyriboinosinic:polyribocytidylic acid as an adjuvant. The vaccine-induced antitumor responses inhibited tumor growth and increased overall survival, indicating that expansion of intratumoral CD103+ dendritic cells by CXCR4-A-armed oncovirotherapy treatment can potentiate in situ cancer vaccine boosting.
SUBMITTER: Mistarz A
PROVIDER: S-EPMC6667789 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA