Phosphorylation-dependent protein design: design of a minimal protein kinase-inducible domain.
Ontology highlight
ABSTRACT: Protein kinases and phosphatases modulate protein structure and function, which in turn regulate cellular activities. The development of novel proteins and protein motifs that are responsive to protein phosphorylation provides new ways to probe the functions of individual protein kinases and the intracellular effects of their activation and downregulation. Herein we develop a minimal motif that is responsive to protein phosphorylation, termed a minimal protein kinase-inducible domain. The encodable protein motif comprises a 7- or 8-residue sequence (DKDADXW or DKDADXXW), derived from EF-Hand calcium-binding domains, that is necessary but not sufficient for binding terbium, combined with a protein phosphorylation site (Ser or Thr at residue 9) that, upon phosphorylation, completes the metal-binding motif. Thus, the motif binds metal poorly and exhibits weak terbium luminescence when not phosphorylated. Upon phosphorylation, the peptide binds metal with significantly higher affinity and exhibits robust terbium luminescence. Phosphorylation results in up to a 23× increase in terbium luminescence. Minimal phosphorylation-dependent motifs as small as 9 residues (DKDADGWIS) were developed. NMR spectroscopy on this lanthanum(iii)·phosphopeptide complex confirmed that binding occurs in a manner similar to that in an EF-Hand, despite the absence of the conserved Glu12 typically present in an EF-Hand. By combining molecular design with known protein kinase recognition sequences, minimal protein kinase-inducible domains were developed that were responsive to phosphorylation by Protein Kinase A (PKA: DKDADRRW(S/pS)IIAK), Protein Kinase C (PKC: DKDADGWI(T/pT)FRRKA), and Casein Kinase 1 (CK1: DKDADDWA(S/pS)I). Phosphorylation by PKA was quantified in HeLa cell extracts, with a 4.4× increase in fluorescence (terbium luminescence) observed at 544 nm. The optimized minimal motif includes alternating aspartate residues at positions 1, 3, and 5, plus binding through the main-chain carbonyl at position 7; a lysine at position 2 to provide electrostatic balance and reduce binding in the absence of phosphorylation; an alanine at residue 4 to promote the ?L conformation observed at that position of the EF Hand; a tryptophan at residue 7 or 8 to sensitize terbium luminescence; and a phosphorylation site with serine or threonine at residue 9. Residues at positions 6; 7 or 8; and 10 or later may be changed to provide kinase specificity. In the CK1-responsive peptide, the acidic residues in the proto-terbium-binding motif are employed as part of the kinase recognition sequence. This work thus presents fundamental rules for the design of compact phosphorylation-responsive terbium-binding motifs, with potential further application to motifs responsive to other protein post-translational modifications.
SUBMITTER: Gao F
PROVIDER: S-EPMC6668337 | biostudies-literature | 2019 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA