Unknown

Dataset Information

0

Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells.


ABSTRACT: Graphene, a two-dimensional carbon sheet with single-atom thickness, shows immense promise in several nanoscientific and nanotechnological applications, including in sensors, catalysis, and biomedicine. Although several studies have shown the cytotoxicity of graphene oxide in different cell types, there are no comprehensive studies on human embryonic kidney (HEK293) cells that include transcriptomic analysis and an in vitro investigation into the mechanisms of cytotoxicity following exposure to graphene oxide. Therefore, we exposed HEK293 cells to different concentrations of graphene oxide for 24 h and performed several cellular assays. Cell viability and proliferation assays revealed a significant dose-dependent cytotoxic effect on HEK293 cells. Cytotoxicity assays showed increased lactate dehydrogenase (LDH) leakage and reactive oxygen species (ROS) generation, and decreased levels of reduced glutathione (GSH) and increased level of oxidized glutathione indicative of oxidative stress. This detailed mechanistic approach showed that graphene oxide exposure elicits significant decreases in mitochondrial membrane potential and ATP synthesis, as well as in DNA damage and caspase 3 activity. Furthermore, our RNA-Seq analysis revealed that HEK293 cells exposed to graphene oxide significantly altered the expression of genes involved in multiple apoptosis-related biological pathways. Moreover, graphene oxide exposure perturbed the expression of key transcription factors, promoting these apoptosis-related pathways by regulating their downstream genes. Our analysis provides mechanistic insights into how exposure to graphene oxide induces changes in cellular responses and massive cell death in HEK293 cells. To our knowledge, this is the first study describing a combination of cellular responses and transcriptome in HEK293 cells exposed to graphene oxide nanoparticles, providing a foundation for understanding the molecular mechanisms of graphene oxide-induced cytotoxicity and for the development of new therapeutic strategies.

SUBMITTER: Gurunathan S 

PROVIDER: S-EPMC6669460 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells.

Gurunathan Sangiliyandi S   Arsalan Iqbal Muhammad M   Qasim Muhammad M   Park Chan Hyeok CH   Yoo Hyunjin H   Hwang Jeong Ho JH   Uhm Sang Jun SJ   Song Hyuk H   Park Chankyu C   Do Jeong Tae JT   Choi Youngsok Y   Kim Jin-Hoi JH   Hong Kwonho K  

Nanomaterials (Basel, Switzerland) 20190702 7


Graphene, a two-dimensional carbon sheet with single-atom thickness, shows immense promise in several nanoscientific and nanotechnological applications, including in sensors, catalysis, and biomedicine. Although several studies have shown the cytotoxicity of graphene oxide in different cell types, there are no comprehensive studies on human embryonic kidney (HEK293) cells that include transcriptomic analysis and an in vitro investigation into the mechanisms of cytotoxicity following exposure to  ...[more]

Similar Datasets

| S-EPMC9000472 | biostudies-literature
| S-EPMC7692636 | biostudies-literature
| S-EPMC5175188 | biostudies-literature
| S-EPMC6206054 | biostudies-literature
2023-09-28 | PXD029382 | Pride
| S-EPMC4443491 | biostudies-literature
| S-EPMC4873758 | biostudies-literature
| S-EPMC6748275 | biostudies-literature
| S-EPMC2834318 | biostudies-literature
| S-EPMC6061886 | biostudies-other