Unknown

Dataset Information

0

High-throughput Production of ZnO-MoS2-Graphene Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution.


ABSTRACT: High-throughput production of highly efficient photocatalysts for hydrogen evolution remains a considerable challenge for materials scientists. Here, we produced extremely uniform high-quality graphene and molybdenum disulfide (MoS2) nanoplatelets through the electrochemical-assisted liquid-phase exfoliation, out of which we subsequently fabricated MoS2/graphene van der Waals heterostructures. Ultimately, zinc oxide (ZnO) nanoparticles were deposited into these two-dimensional heterostructures to produce an artificial ZnO/MoS2/graphene nanocomposite. This new composite experimentally exhibited an excellent photocatalytic efficiency in hydrogen evolution under the sunlight illumination ( λ > 400   n m ), owing to the extremely high electron mobilities in graphene nanoplatelets and the significant visible-light absorptions of MoS2. Moreover, due to the synergistic effects in MoS2 and graphene, the lifetime of excited carriers increased dramatically, which considerably improved the photocatalytic efficiency of the ZnO/MoS2/graphene heterostructure. We conclude that the novel artificial heterostructure presented here shows great potential for the high-efficient photocatalytic hydrogen generation and the high throughput production of visible-light photocatalysts for industrial applications.

SUBMITTER: Dong H 

PROVIDER: S-EPMC6678946 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8469628 | biostudies-literature
| S-EPMC5908348 | biostudies-literature
| S-EPMC4559807 | biostudies-other
| S-EPMC9047063 | biostudies-literature
| S-EPMC7690575 | biostudies-literature
| S-EPMC4685316 | biostudies-other
| S-EPMC9369747 | biostudies-literature
| S-EPMC3899643 | biostudies-literature
| S-EPMC4996486 | biostudies-literature
| S-EPMC4352920 | biostudies-literature