Unknown

Dataset Information

0

Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis.


ABSTRACT: The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern dicyclic (CBDA) and tricyclic (THCA) cannabinoid composition. However, the inheritance of alkyl side-chain length has not been resolved, and few studies have investigated the contributions and interactions between cannabinoid synthesis pathway loci. To examine the inheritance of chemical phenotype (chemotype), THCAS and CBDAS genotypes were scored and alkyl cannabinoid segregation analysed in 210 F2 progeny derived from a cross between two Cannabis chemotypes divergent for alkyl and cyclic cannabinoids. Inheritance patterns of F2 progeny were non-Gaussian and deviated from Mendelian expectations. However, discrete alkyl cannabinoid segregation patterns consistent with digenic as well as epistatic modes of inheritance were observed among F2 THCAS and CBDAS genotypes. These results suggest linkage between cannabinoid pathway loci and highlight the need for further detailed characterisation of cannabinoid inheritance to facilitate metabolic engineering of chemically elite germplasm.

SUBMITTER: Welling MT 

PROVIDER: S-EPMC6684623 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis.

Welling Matthew T MT   Liu Lei L   Raymond Carolyn A CA   Kretzschmar Tobias T   Ansari Omid O   King Graham J GJ  

Scientific reports 20190806 1


The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern dicyclic (CBDA) and tricyclic (THCA) cannabinoid composition. However, the inheritance of alkyl side-chain length has not been resolved, and few studies have investigated the contributions and intera  ...[more]

Similar Datasets

| S-EPMC10523433 | biostudies-literature
| S-EPMC7702092 | biostudies-literature
| S-EPMC6206272 | biostudies-other
| S-EPMC10363750 | biostudies-literature
| S-EPMC7104573 | biostudies-literature
| S-EPMC8607806 | biostudies-literature
| S-EPMC9329624 | biostudies-literature
| S-EPMC9502987 | biostudies-literature
| S-EPMC9792157 | biostudies-literature
| S-EPMC3105727 | biostudies-literature