Unknown

Dataset Information

0

The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response.


ABSTRACT: Neuronal physiology is particularly sensitive to acute stressors that affect excitability, many of which can trigger seizures and epilepsies. Although intrinsic neuronal homeostasis plays an important role in maintaining overall nervous system robustness and its resistance to stressors, the specific genetic and molecular mechanisms that underlie these processes are not well understood. Here we used a reverse genetic approach in Drosophila to test the hypothesis that specific voltage-gated ion channels contribute to neuronal homeostasis, robustness, and stress resistance. We found that the activity of the voltage-gated potassium channel seizure (sei), an ortholog of the mammalian ERG channel family, is essential for protecting flies from acute heat-induced seizures. Although sei is broadly expressed in the nervous system, our data indicate that its impact on the organismal robustness to acute environmental stress is primarily mediated via its action in excitatory neurons, the octopaminergic system, as well as neuropile ensheathing and perineurial glia. Furthermore, our studies suggest that human mutations in the human ERG channel (hERG), which have been primarily implicated in the cardiac Long QT Syndrome (LQTS), may also contribute to the high incidence of seizures in LQTS patients via a cardiovascular-independent neurogenic pathway.

SUBMITTER: Hill AS 

PROVIDER: S-EPMC6687100 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response.

Hill Alexis S AS   Jain Poorva P   Folan Nicole E NE   Ben-Shahar Yehuda Y  

PLoS genetics 20190808 8


Neuronal physiology is particularly sensitive to acute stressors that affect excitability, many of which can trigger seizures and epilepsies. Although intrinsic neuronal homeostasis plays an important role in maintaining overall nervous system robustness and its resistance to stressors, the specific genetic and molecular mechanisms that underlie these processes are not well understood. Here we used a reverse genetic approach in Drosophila to test the hypothesis that specific voltage-gated ion ch  ...[more]

Similar Datasets

| S-EPMC6573166 | biostudies-literature
| S-EPMC3591268 | biostudies-literature
| S-EPMC5454467 | biostudies-literature
| S-EPMC5346653 | biostudies-literature
| S-EPMC6716356 | biostudies-literature
| S-EPMC3016345 | biostudies-literature
| S-EPMC6751176 | biostudies-literature
| S-EPMC6573183 | biostudies-literature
| S-EPMC3411628 | biostudies-literature
| S-EPMC11373613 | biostudies-literature