Unknown

Dataset Information

0

How Sensitive Are Conventional MEG Functional Connectivity Metrics With Sliding Windows to Detect Genuine Fluctuations in Dynamic Functional Connectivity?


ABSTRACT: Despite advances in the field of dynamic connectivity, fixed sliding window approaches for the detection of fluctuations in functional connectivity are still widely used. The use of conventional connectivity metrics in conjunction with a fixed sliding window comes with the arbitrariness of the chosen window lengths. In this paper we use multivariate autoregressive and neural mass models with a priori defined ground truths to systematically analyze the sensitivity of conventional metrics in combination with different window lengths to detect genuine fluctuations in connectivity for various underlying state durations. Metrics of interest are the coherence, imaginary coherence, phase lag index, phase locking value and the amplitude envelope correlation. We performed analysis for two nodes and at the network level. We demonstrate that these metrics show indeed higher variability for genuine temporal fluctuations in connectivity compared to a static connectivity state superimposed by noise. Overall, the error of the connectivity estimates themselves decreases for longer state durations (order of seconds), while correlations of the connectivity fluctuations with the ground truth was higher for longer state durations. In general, metrics, in combination with a sliding window, perform poorly for very short state durations. Increasing the SNR of the system only leads to a moderate improvement. In addition, at the network level, only longer window widths were sufficient to detect plausible resting state networks that matched the underlying ground truth, especially for the phase locking value, amplitude envelope correlation and coherence. The length of these longer window widths did not necessarily correspond to the underlying state durations. For short window widths resting state network connectivity patterns could not be retrieved. We conclude that fixed sliding window approaches for connectivity can detect modulations of connectivity, but mostly if the underlying dynamics operate on moderate to slow timescales. In practice, this can be a drawback, as state durations can vary significantly in empirical data.

SUBMITTER: Liuzzi L 

PROVIDER: S-EPMC6688728 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

How Sensitive Are Conventional MEG Functional Connectivity Metrics With Sliding Windows to Detect Genuine Fluctuations in Dynamic Functional Connectivity?

Liuzzi Lucrezia L   Quinn Andrew J AJ   O'Neill George C GC   Woolrich Mark W MW   Brookes Matthew J MJ   Hillebrand Arjan A   Tewarie Prejaas P  

Frontiers in neuroscience 20190802


Despite advances in the field of dynamic connectivity, fixed sliding window approaches for the detection of fluctuations in functional connectivity are still widely used. The use of conventional connectivity metrics in conjunction with a fixed sliding window comes with the arbitrariness of the chosen window lengths. In this paper we use multivariate autoregressive and neural mass models with <i>a priori</i> defined ground truths to systematically analyze the sensitivity of conventional metrics i  ...[more]

Similar Datasets

| S-EPMC4533088 | biostudies-other
| S-EPMC8881826 | biostudies-literature
| S-EPMC5056955 | biostudies-literature
| S-EPMC8216250 | biostudies-literature
| S-EPMC8233113 | biostudies-literature
| S-EPMC6088195 | biostudies-literature
| S-EPMC6865616 | biostudies-literature
| S-EPMC4435472 | biostudies-literature
| S-EPMC6964829 | biostudies-literature
| S-EPMC11212997 | biostudies-literature