Unknown

Dataset Information

0

TiO2-Capped Gold Nanorods for Plasmon-Enhanced Production of Reactive Oxygen Species and Photothermal Delivery of Chemotherapeutic Agents.


ABSTRACT: Near infrared (NIR)-absorbing noble metal nanostructures are being extensively studied as theranostic agents, in particular for photoacoustic imaging and photothermal therapy. Because of the electric field enhancement at the tips of anisotropic metal nanostructures, positioning photoactive species at these sites can lead to increased energy absorption. Herein, we show the site-specific placement of NIR-active photosensitizers at the ends of gold nanorods (AuNRs) by growing porous TiO2 caps. The surface plasmon resonance of the AuNRs was carefully tuned to overlap with the exciton absorption of indocyanine green (ICG), a NIR photosensitizer with low quantum yields and poor photostability. In conjugating high amounts of ICG to the TiO2 caps, increased amounts of singlet oxygen (1O2) were generated as compared to when ICG was attached to sidewalls of the AuNRs. Because the AuNRs also cause local increases in temperature upon NIR excitation, DNA strands were next attached to the AuNRs sidewalls and loaded with doxorubicin (DOX). We found that the synergistic effect of increased 1O2 and photothermal-induced drug delivery led to significant improvements in tumor cell killing. This work demonstrates that with careful design over hybrid nanostructure synthesis, higher levels of tumor therapy may be achieved.

SUBMITTER: He L 

PROVIDER: S-EPMC6689239 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

TiO<sub>2</sub>-Capped Gold Nanorods for Plasmon-Enhanced Production of Reactive Oxygen Species and Photothermal Delivery of Chemotherapeutic Agents.

He Liangcan L   Mao Chenchen C   Brasino Michael M   Harguindey Albert A   Park Wounjhang W   Goodwin Andrew P AP   Cha Jennifer N JN  

ACS applied materials & interfaces 20180808 33


Near infrared (NIR)-absorbing noble metal nanostructures are being extensively studied as theranostic agents, in particular for photoacoustic imaging and photothermal therapy. Because of the electric field enhancement at the tips of anisotropic metal nanostructures, positioning photoactive species at these sites can lead to increased energy absorption. Herein, we show the site-specific placement of NIR-active photosensitizers at the ends of gold nanorods (AuNRs) by growing porous TiO<sub>2</sub>  ...[more]

Similar Datasets

| S-EPMC6135770 | biostudies-literature
| S-EPMC3241533 | biostudies-literature
| S-EPMC5995181 | biostudies-literature
| S-EPMC5404630 | biostudies-literature
| S-EPMC6415155 | biostudies-literature
| S-EPMC8630206 | biostudies-literature
| S-EPMC4182177 | biostudies-literature
| S-EPMC4493038 | biostudies-literature
| S-EPMC7009025 | biostudies-literature
| S-EPMC2863293 | biostudies-literature