Unknown

Dataset Information

0

Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping.


ABSTRACT: Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state controller that uses specific frequency bands of the microbubble acoustic emissions (harmonic, ultra-harmonic, etc.) to control cavitation activity (observer states). To attain both spatial and temporal control of cavitation activity with high signal to noise ratio, we implement a controller using fast frequency-selective passive acoustic mapping (PAM) based on the angular spectrum approach. The controller includes safety states based on the recorded broadband signal level and is able to reduce sensing inaccuracies with the inclusion of multiple frequency bands. In its simplest implementation the controller uses the peak intensity of the passive acoustic maps, reconstructed using the 3rd harmonic (4.896 × 0.019 MHz) of the excitation frequency. Our results show that the proposed real-time nonlinear state controller based on PAM is able to reach the targeted level of observer state (harmonic emissions) in less than 6 seconds and remain within 10 % of tolerance for the duration of the experiment (45 seconds). Similar response was observed using the acoustic emissions from single element passive cavitation detection, albeit with higher susceptibility to background noise and lack of spatial information. Importantly, the proposed PAM-based controller was able to control cavitation activity with spatial selectivity when cavitation existed simultaneously in multiple regions. The robustness of the controller is demonstrated using a range of controller parameters, multiple observer states concurrently (harmonic, ultra-harmonic, and broadband), noise levels (°6 to 12 dB SNR), and bubble concentrations (0.3 to 180 × 103 bubbles per microliter). More research in this direction under preclinical and clinical conditions is warranted.

SUBMITTER: Patel A 

PROVIDER: S-EPMC6690816 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping.

Patel Arpit A   Schoen Scott J SJ   Arvanitis Costas D CD  

IEEE transactions on bio-medical engineering 20181120


Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state c  ...[more]

Similar Datasets

| S-EPMC6722067 | biostudies-literature
| S-EPMC7805931 | biostudies-literature
| S-EPMC6276289 | biostudies-literature
| S-EPMC7614485 | biostudies-literature
| S-EPMC3746980 | biostudies-literature
| S-EPMC5344809 | biostudies-literature
| S-EPMC7453908 | biostudies-literature
| S-EPMC7035585 | biostudies-literature
| S-EPMC4965030 | biostudies-literature
| S-EPMC8573794 | biostudies-literature