Unknown

Dataset Information

0

RNA-silencing nanoprobes for effective activation and dynamic imaging of neural stem cell differentiation.


ABSTRACT: To achieve the clinical potential of neural stem cells (NSCs), it is crucial to activate NSC differentiation into neurons and simultaneously monitor the process of NSC differentiation. However, there are many challenges associated with regulating and tracking NSC differentiation. Methods: We developed a redox-responsive multifunctional nanocomplex with a disulfide bond-cvNC-for the delivery of siRNAs to induce NSC differentiation through sequence-specific RNA interference (RNAi) and real-time imaging of sequential mRNA expression during differentiation. The stability and specificity of cvNCs were studied in vitro. Controlled release of siRNA, gene silencing efficiency, as well as real-time imaging of cvNCs on Tubb3 and Fox3 mRNAs during NSC differentiation were evaluated. Results: The introduction of a redox-sensitive disulfide bond not only ensures the remarkable performance of cvNC, such as high stability, controlled siRNA release, and enhanced gene silencing efficiency, but also effectively stimulates NSC differentiation into neurons. More importantly, the cvNC can track NSC differentiation in real-time by monitoring the sequential expression of mRNAs. Conclusion: Our study indicates that cvNC can serve as a robust system for exploring NSCs differentiation process as well as other biological events in living cells.

SUBMITTER: Zhang R 

PROVIDER: S-EPMC6691577 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

RNA-silencing nanoprobes for effective activation and dynamic imaging of neural stem cell differentiation.

Zhang Ruili R   Wang Zhe Z   Yang Zuo Z   Wang Linlin L   Wang Zhongdi Z   Chen Baihang B   Wang Zhongliang Z   Tian Jie J  

Theranostics 20190709 18


To achieve the clinical potential of neural stem cells (NSCs), it is crucial to activate NSC differentiation into neurons and simultaneously monitor the process of NSC differentiation. However, there are many challenges associated with regulating and tracking NSC differentiation. <b>Methods</b>: We developed a redox-responsive multifunctional nanocomplex with a disulfide bond-cvNC-for the delivery of siRNAs to induce NSC differentiation through sequence-specific RNA interference (RNAi) and real-  ...[more]

Similar Datasets

| S-EPMC4792673 | biostudies-literature
| S-EPMC7055611 | biostudies-literature
| S-EPMC5233436 | biostudies-literature
| S-EPMC6403272 | biostudies-literature
| S-EPMC5866877 | biostudies-literature
| S-EPMC6420650 | biostudies-literature
| S-EPMC6302452 | biostudies-literature
| S-EPMC3771564 | biostudies-literature
| S-EPMC7016383 | biostudies-literature
| S-EPMC5783419 | biostudies-literature