ABSTRACT: Adipose-derived stromal/stem cells (ASCs) are multipotent in nature that can be differentiated into various cells lineages such as adipogenic, osteogenic, and chondrogenic. The commitment of a cell to differentiate into a particular lineage is regulated by the interplay between various intracellular pathways and their resultant secretome. Similarly, the interactions of cells with the extracellular matrix (ECM) and the ECM bound growth factors instigate several signal transducing events that ultimately determine ASC differentiation. In this study, RNA-sequencing (RNA-Seq) was performed to identify the transcriptome profile of osteogenic induced ASCs to understand the associated genotype changes. Gene ontology (GO) functional annotations analysis using Database for Annotation Visualization and Integrated Discovery (DAVID) bioinformatics resources on the differentially expressed genes demonstrated the enrichment of pathways mainly associated with ECM organization and angiogenesis. We, therefore, studied the expression of genes coding for matrisome proteins (glycoproteins, collagens, proteoglycans, ECM-affiliated, regulators, and secreted factors) and ECM remodeling enzymes (MMPs, integrins, ADAMTSs) and the expression of angiogenic markers during the osteogenesis of ASCs. The upregulation of several pro-angiogenic ELR+ chemokines and other angiogenic inducers during osteogenesis indicates the potential role of the secretome from differentiating ASCs in the vascular development and its integration with the bone tissue. Furthermore, the increased expression of regulatory genes such as CTNNB1, TGBR2, JUN, FOS, GLI3, and MAPK3 involved in the WNT, TGF-?, JNK, HedgeHog and ERK1/2 pathways suggests the regulation of osteogenesis through interplay between these pathways. The RNA-Seq data was also validated by performing QPCR on selected up- and down-regulated genes (COL10A1, COL11A1, FBLN, FERMT1, FN1, FOXF1, LAMA3, LAMA4, LAMB1, IGF1, WNT10B, MMP1, MMP3, MMP16, ADAMTS6, and ADAMTS14).