Unknown

Dataset Information

0

A VNTR Regulates miR-137 Expression Through Novel Alternative Splicing and Contributes to Risk for Schizophrenia.


ABSTRACT: The MIR137HG gene encoding microRNA-137 (miR-137) is genome-wide associated with schizophrenia (SZ), however, the underlying molecular mechanisms remain unknown. Through cloning and sequencing of individual transcripts from fetal and adult human brain tissues we describe novel pri-miR-137 splice variants which exclude the mature miR-137 sequence termed 'del-miR-137' that would function to down-regulate miR-137 expression. Sequencing results demonstrate a significant positive association between del-miR-137 transcripts and the length of a proximal variable number tandem repeat (VNTR) element. Additionally, a significantly higher proportion of sequenced transcripts from fetal brain were del-miR-137 transcripts indicating neurodevelopmental splicing regulation. In-silico results predict an independent regulatory function for del-miR-137 transcripts through competitive endogenous RNA function. A case-control haplotype analysis (n?=?998) in SZ implicates short VNTR length in risk, with longer lengths imparting a protective effect. Rare high risk haplotypes were also observed indicating multiple risk variants within the region. A second haplotype analysis was performed to evaluate recombination effects excluding the VNTR and results indicate that recombination of the region was found to independently contribute to risk. Evaluation of the evolutionary conservation of the VNTR reveals a human lineage specific expansion. These findings shed further light on the risk architecture of the miR-137 region and provide a novel regulatory mechanism through VNTR length and alternative MIR137HG transcripts which contribute to risk for SZ.

SUBMITTER: Pacheco A 

PROVIDER: S-EPMC6692358 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A VNTR Regulates miR-137 Expression Through Novel Alternative Splicing and Contributes to Risk for Schizophrenia.

Pacheco Ashley A   Berger Ralph R   Freedman Robert R   Law Amanda J AJ  

Scientific reports 20190813 1


The MIR137HG gene encoding microRNA-137 (miR-137) is genome-wide associated with schizophrenia (SZ), however, the underlying molecular mechanisms remain unknown. Through cloning and sequencing of individual transcripts from fetal and adult human brain tissues we describe novel pri-miR-137 splice variants which exclude the mature miR-137 sequence termed 'del-miR-137' that would function to down-regulate miR-137 expression. Sequencing results demonstrate a significant positive association between  ...[more]

Similar Datasets

| S-EPMC4506960 | biostudies-literature
| S-EPMC5078619 | biostudies-literature
| S-EPMC3958910 | biostudies-literature
| S-EPMC4403556 | biostudies-literature
| S-EPMC4428556 | biostudies-literature
| S-EPMC5545742 | biostudies-literature
| S-EPMC3636510 | biostudies-literature
| S-EPMC9977177 | biostudies-literature
| S-EPMC7172025 | biostudies-literature
| S-EPMC10898938 | biostudies-literature