A network-based pathway-extending approach using DNA methylation and gene expression data to identify altered pathways.
Ontology highlight
ABSTRACT: Pathway analysis allows us to gain insights into a comprehensive understanding of the molecular mechanisms underlying cancers. Currently, high-throughput multi-omics data and various types of large-scale biological networks enable us to identify cancer-related pathways by comprehensively analyzing these data. Combining information from multidimensional data, pathway databases and interaction networks is a promising strategy to identify cancer-related pathways. Here we present a novel network-based approach for integrative analysis of DNA methylation and gene expression data to extend original pathways. The results show that the extension of original pathways can provide a basis for discovering new components of the original pathway and understanding the crosstalk between pathways in a large-scale biological network. By inputting the gene lists of the extended pathways into the classical gene set analysis (ORA and FCS), we effectively identified the altered pathways which are correlated well with the corresponding cancer. The method is evaluated on three datasets retrieved from TCGA (BRCA, LUAD and COAD). The results show that the integration of DNA methylation and gene expression data through a network of known gene interactions is effective in identifying altered pathways.
SUBMITTER: Li J
PROVIDER: S-EPMC6694157 | biostudies-literature | 2019 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA