Unknown

Dataset Information

0

The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres.


ABSTRACT: This paper aims to investigate the effect of the polypropylene fibre (PP) and basalt fibre (BF), singly or in hybridization, on the workability, mechanical, chloride resistance and pore structure characteristics of concrete. Sixteen mixtures consisting of PP and BF, both at volume content of 0.0, 0.1, 0.2 and 0.3%, were fabricated, and the slump, compressive, splitting tensile, flexural and charge passed were tested. The results show the hybridization of the PP and BF can improve three types of strength of concrete in comparison to their single fibre. Nevertheless, the hybridization is not always conducive, and the synergy of fibres is proposed and divided into positive and negative effects. The combination of the PP and BF both at content of 0.1% achieves the best mechanical performance, and is recommended for practical usage. Incorporating fibres reduces the chloride resistance of concrete, and the hybridization is helpless to this phenomenon; even the reduction is intensified at a highly hybrid fibre volume. However, increasing the curing age can mitigate this adverse effect caused by fibres. Furthermore, the microstructures were explored to elucidate the macro-properties of concrete in terms of interface and pore structure.

SUBMITTER: Hu X 

PROVIDER: S-EPMC6696440 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres.

Hu Xinyu X   Guo Yihong Y   Lv Jianfu J   Mao Jize J  

Materials (Basel, Switzerland) 20190725 15


This paper aims to investigate the effect of the polypropylene fibre (PP) and basalt fibre (BF), singly or in hybridization, on the workability, mechanical, chloride resistance and pore structure characteristics of concrete. Sixteen mixtures consisting of PP and BF, both at volume content of 0.0, 0.1, 0.2 and 0.3%, were fabricated, and the slump, compressive, splitting tensile, flexural and charge passed were tested. The results show the hybridization of the PP and BF can improve three types of  ...[more]

Similar Datasets

| S-EPMC7143040 | biostudies-literature
| S-EPMC7178649 | biostudies-literature
| S-EPMC7761221 | biostudies-literature
| S-EPMC7041369 | biostudies-literature
| S-EPMC7023462 | biostudies-literature
| S-EPMC11013364 | biostudies-literature
| S-EPMC5448969 | biostudies-other
| S-EPMC7475824 | biostudies-literature
| S-EPMC5456437 | biostudies-other
| S-EPMC6394418 | biostudies-literature