Ontology highlight
ABSTRACT: Purpose
Current treatments for diabetic retinopathy (DR) have considerable limitations, underpinning the need for new therapeutic options. In this article, the ability of an engineered angiopoietin-1 variant (COMP-Ang1) to ameliorate the injurious effects of hyperglycemia on barrier integrity in a human retinal microvascular endothelial cell (HRMvEC) model is comprehensively investigated.Methods
Confluent HRMvECs were treated (0-72 hours) with d-glucose (5 or 30 mM) in the absence and presence of COMP-Ang1 (10-200 ng/mL). l-glucose (30 mM) was used as osmotic control. Posttreatment, intact cell monolayers were monitored for permeability to FITC-dextran 40 kDa. Cells were also harvested for analysis of interendothelial junction targets by RT-qPCR and Western blotting. The impact of receptor tyrosine kinase Tie2 gene silencing on COMP-Ang1 efficacy was also evaluated.Results
Treatment with 30 mM d-glucose (but not l-glucose) demonstrated a time-dependent elevation in the mean rate of FITC-dextran diffusion across intact HRMvEC monolayers, in parallel with significant reductions in mRNA/protein levels of occludin, claudin-5, ZO-1, and VE-Cadherin. These effects were all attenuated by COMP-Ang1 in a concentration-dependent fashion, with 200 ng/mL recovering barrier function by ?88%, and recovering reduced interendothelial junction protein levels by more than 50%. Finally, Tie2 knockdown by small interfering RNA silencing blocked the ability of COMP-Ang1 to mitigate against hyperglycemia-induced permeabilization of HRMvECs and depletion of junctional expression levels.Conclusions
In summary, this article presents a reproducible in vitro cell study that quantifies the concentration-dependent efficacy of COMP-Ang1 to mitigate the injurious effects of hyperglycemic challenge on HRMvEC barrier properties via Tie2-mediated signaling.
SUBMITTER: Rochfort KD
PROVIDER: S-EPMC6699794 | biostudies-literature | 2019 Aug
REPOSITORIES: biostudies-literature
Rochfort Keith D KD Carroll Lara S LS Barabas Peter P Curtis Timothy M TM Ambati Balamurali K BK Barron Niall N Cummins Philip M PM
Investigative ophthalmology & visual science 20190801 10
<h4>Purpose</h4>Current treatments for diabetic retinopathy (DR) have considerable limitations, underpinning the need for new therapeutic options. In this article, the ability of an engineered angiopoietin-1 variant (COMP-Ang1) to ameliorate the injurious effects of hyperglycemia on barrier integrity in a human retinal microvascular endothelial cell (HRMvEC) model is comprehensively investigated.<h4>Methods</h4>Confluent HRMvECs were treated (0-72 hours) with d-glucose (5 or 30 mM) in the absenc ...[more]