Unknown

Dataset Information

0

High Density Genetic Maps of Seashore Paspalum Using Genotyping-By-Sequencing and Their Relationship to The Sorghum Bicolor Genome.


ABSTRACT: As a step towards trait mapping in the halophyte seashore paspalum (Paspalum vaginatum Sw.), we developed an F1 mapping population from a cross between two genetically diverse and heterozygous accessions, 509022 and HI33. Progeny were genotyped using a genotyping-by-sequencing (GBS) approach and sequence reads were analyzed for single nucleotide polymorphisms (SNPs) using the UGbS-Flex pipeline. More markers were identified that segregated in the maternal parent (HA maps) compared to the paternal parent (AH maps), suggesting that 509022 had overall higher levels of heterozygosity than HI33. We also generated maps that consisted of markers that were heterozygous in both parents (HH maps). The AH, HA and HH maps each comprised more than 1000 markers. Markers formed 10 linkage groups, corresponding to the ten seashore paspalum chromosomes. Comparative analyses showed that each seashore paspalum chromosome was syntenic to and highly colinear with a single sorghum chromosome. Four inversions were identified, two of which were sorghum-specific while the other two were likely specific to seashore paspalum. These high-density maps are the first available genetic maps for seashore paspalum. The maps will provide a valuable tool for plant breeders and others in the Paspalum community to identify traits of interest, including salt tolerance.

SUBMITTER: Qi P 

PROVIDER: S-EPMC6704178 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

High Density Genetic Maps of Seashore Paspalum Using Genotyping-By-Sequencing and Their Relationship to The Sorghum Bicolor Genome.

Qi Peng P   Eudy Douglas D   Schnable James C JC   Schmutz Jeremy J   Raymer Paul L PL   Devos Katrien M KM  

Scientific reports 20190821 1


As a step towards trait mapping in the halophyte seashore paspalum (Paspalum vaginatum Sw.), we developed an F<sub>1</sub> mapping population from a cross between two genetically diverse and heterozygous accessions, 509022 and HI33. Progeny were genotyped using a genotyping-by-sequencing (GBS) approach and sequence reads were analyzed for single nucleotide polymorphisms (SNPs) using the UGbS-Flex pipeline. More markers were identified that segregated in the maternal parent (HA maps) compared to  ...[more]

Similar Datasets

| S-EPMC4938647 | biostudies-literature
| S-EPMC6071585 | biostudies-other
| S-EPMC7006205 | biostudies-literature
| S-EPMC8431245 | biostudies-literature
| S-EPMC4630571 | biostudies-literature
| S-EPMC3289635 | biostudies-literature
| S-EPMC5432509 | biostudies-literature
| S-EPMC3334600 | biostudies-literature
| S-EPMC8812014 | biostudies-literature
| S-EPMC8015352 | biostudies-literature