ABSTRACT: BACKGROUND:Early detection of diabetic foot ulcerations (DFUs) can avoid or delay any progression into more severe stages, which may require limb amputation or lead to infectious sequelae and death. However, frequent clinical screening would be too intrusive and costly, and self-examination may be hampered by concomitant diseases and social disabilities. In addition, it requires professional knowledge and experience using specialized devices. Researchers reported that skin temperature monitoring could reduce the risk of DFUs in high-risk patients. The main research objects in this field are effective and convenient means of temperature measurement, accurate and reasonable early warning mechanisms, and timely and appropriate interventions. This trial aims to investigate the effectiveness of daily home-based foot temperature measurements in the prevention of DFUs with the aid of intelligent sensor-equipped insoles combined with photo documentation. METHODS/DESIGN:In this open-label, prospective, randomized, 24-month trial, 300 patients with diabetes mellitus (type 1 or 2) and severe diabetic peripheral neuropathy (vibration sensation ??4/8), aged 18-85?years, will be recruited and assigned to control and intervention groups in a ratio of 1:1. Main inclusion criteria to be eligible for study participation encompass in particular risk group 2 or 3 for the development of DFUs using the diabetic foot risk classification system (as specified by the International Working Group on the Diabetic Feet [IWGDF]) and the ability to use a mobile phone. INTERVENTIONS:Participants in both groups will receive education about regular foot care at the beginning of the study (visit 0). In the intervention group, every patient will receive a pair of slippers with the inserted sensor-equipped insole as well as a smartphone with the corresponding smartphone application (Smart Prevent Diabetic Feet Application). The insole is a tool that records the temperature variabilities of the plantar foot. Patients will measure their foot temperature twice a day at home with a time interval >?4 h during the entire course of the study (24?months). The measured data will be initially analyzed and visualized, and further transferred to a remote server that allows the physician to perform specific interpretations. In case of temperature differences >?1.5?°C between left and right corresponding sites lasting >?32?h (assigned alarm level 4), the physician will start an intervention phase, which requires the patient to reduce daily activities and relax his feet for five days. At the same time, photo documentation is encouraged to be performed by the patient. Possibly, additional visits to a private doctor or clinical examinations will be arranged for the patient during this intervention period. OUTCOMES:The primary outcome is foot ulceration, evaluated by a physician, and occurring at any point during the study. DISCUSSION:This study addresses principal aspects in the prevention of DFUs. First, the sensor-equipped insole will be evaluated for daily performance in home-based measurements of foot temperatures. Second, a telemedicine structure is tested that evaluates sensor data automatically and proposes suitable intervention measures under the supervision of a physician. Third, predictive models for DFUs will be built using the collected sensor data allowing for interpretations, which in the future may support medical care providers. TRIAL REGISTRATION:German Clinical Trials Register (DRKS), DRKS00013798 . Registered on 18 January 2018.