Unknown

Dataset Information

0

Identification of Proteomic Components Associated with Resistance to Fusarium Head Blight in Rye.


ABSTRACT: Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of ?- and ?-amylase activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of ?- and ?-amylases, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.

SUBMITTER: Perlikowski D 

PROVIDER: S-EPMC6706010 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of Proteomic Components Associated with Resistance to <i>Fusarium</i> Head Blight in Rye.

Perlikowski Dawid D   Wiśniewska Halina H   Góral Tomasz T   Ochodzki Piotr P   Majka Maciej M   Pawłowicz Izabela I   Belter Jolanta J   Kosmala Arkadiusz A  

The plant pathology journal 20190801 4


Rye was used here to dissect molecular mechanisms of resistance to <i>Fusarium</i> head blight (FHB) and to go deeper with our understanding of that process in cereals. <i>F. culmorum</i>-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of α- and β-amylase activities and mycotoxin content. The proteomic  ...[more]

Similar Datasets

| S-EPMC7761804 | biostudies-literature
| S-EPMC6638912 | biostudies-literature
| S-EPMC6116500 | biostudies-other
| S-EPMC4207761 | biostudies-literature
| S-EPMC10482112 | biostudies-literature
| S-EPMC5362683 | biostudies-literature
| S-EPMC5061752 | biostudies-other
| S-EPMC9271104 | biostudies-literature
| S-EPMC4902456 | biostudies-literature
| S-EPMC4875680 | biostudies-literature