Urinary and Genetic Biomonitoring of Polycyclic Aromatic Hydrocarbons in Egyptian Coke Oven Workers: Associations between Exposure, Effect, and Carcinogenic Risk Assessment.
Ontology highlight
ABSTRACT: BACKGROUND:Coke oven workers are exposed to polycyclic aromatic hydrocarbons (PAHs) with possible genotoxicity and carcinogenicity. Metabolizing enzymes genes and DNA repair genes are suspected to be correlated with the level of DNA damage. They may contribute to variable individual sensitivity to DNA damage induced by PAHs exposure at workplace. OBJECTIVE:To investigate the relationship between biomarkers of PAHs: 1-hydroxypyrene (1-OHP), DNA adducts, and 8-hydroxy-2-deoxyguanosine (8-OHdG) in coke oven workers, and to assess the role of cytochrome P2E1 (CYP2E1) gene expression and DNA repairing gene (XRCC1) polymorphism in detecting workers at risk. METHODS:85 exposed workers and 85 unexposed controls were enrolled into this study. Urinary 1-OHP, 8-OHdG, and BPDE-DNA adduct were measured. CYP2E1 gene expression and genotyping of XRCC1 399 Arg/Gln were evaluated by real-time PCR. RESULTS:The median urinary 1-OHP levels (6.3 ?mol/mol creatinine), urinary 8-OHdG (7.9 ng/mg creatinine), DNA adducts (6.7 ng/?g DNA) in the exposed group were significantly higher than those in the unexposed group. Carriers of the variant allele (Gln) of XRCC1 had the highest levels of 1-OHP, DNA adducts and 8-OHdG, and the lowest level of CYP2E1 gene expression. In exposed workers, significant positive correlations were found between 1-OHP level and each of the work duration, 8-OHdG, and DNA adducts levels. There was a significant negative correlation between 1-OHP level and CYP2E1 gene expression. Work duration and CYP2E1 gene expression were predictors of DNA adducts level; 1-OHP level and work duration were predictors of urinary 8-OHdG level. CONCLUSION:Workers with higher exposure to PAH were more prone to oxidative DNA damage and cancer development. DNA adducts level reflects the balance between their production by CYP2E1 and elimination by XRCC1 gene.
SUBMITTER: Samir AM
PROVIDER: S-EPMC6708401 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA