Cadaveric biomechanical testing of torque - to - failure magnitude of Bilateral Apical Vertebral Derotation maneuver in the thoracic spine.
Ontology highlight
ABSTRACT: It remains unclear what is the real safe limit of torque magnitude during Bilateral Apical Vertebral Derotation (BAVD) in thoracic curve correction. Up to author's knowledge there is no study except this one, to reproduce in-vivo real measurements and intraoperative conditions during BAVD maneuver. The objective of this study was to evaluate the torsional strength of the instrumented thoracic spine under axial rotation moment as well as to define safety limits under BAVD corrective maneuver in scoliosis surgery. 10 fresh, full-length, young and intact human cadavers were tested. After proper assembly of the apparatus, the torque was applied through its apical part, simulating thoracic curve derotation. During each experiment the torque magnitude and angular range of derotation were evaluated. For more accurate analysis after every experiment the examined section of the spine was resected from the cadaver and evaluated morphologically and with a CT scan. The average torque to failure during BAVD simulation was 73,3 ± 5,49Nm. The average angle of BAVD to failure was 44,5 ± 8,16°. The majority of failures were in apical area. There was no significant difference between the fracture occurrence of left or right side of lateral wall of the pedicle. There was no spinal canal breach and/or medial wall failure in any specimen. The safety limits of thoracic spine and efficacy of BAVD for axial plane correction in the treatment of Adolescent Idiopathic Scoliosis (AIS) were established. It provided qualitative and quantitative information essential for the spinal derotation under safe loading limits.
SUBMITTER: Pankowski R
PROVIDER: S-EPMC6709919 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA