Unknown

Dataset Information

0

An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length.


ABSTRACT:

Background

Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome.

Methods

With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001-2002), we used unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also employed supervised learning techniques, including penalized, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions, and the overall mixture effect.

Results

Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was found among those with high exposure. The first PCA component represented overall POP exposure and was positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners.

Conclusions

Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for mixture method selection based on specific research questions.

SUBMITTER: Gibson EA 

PROVIDER: S-EPMC6714427 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length.

Gibson Elizabeth A EA   Nunez Yanelli Y   Abuawad Ahlam A   Zota Ami R AR   Renzetti Stefano S   Devick Katrina L KL   Gennings Chris C   Goldsmith Jeff J   Coull Brent A BA   Kioumourtzoglou Marianthi-Anna MA  

Environmental health : a global access science source 20190828 1


<h4>Background</h4>Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome.<h4>Methods</h4>With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001-2002), we used unsupervised methods including clustering to identify profi  ...[more]

Similar Datasets

| S-EPMC4858394 | biostudies-literature
| S-EPMC6037063 | biostudies-literature
| S-EPMC6363724 | biostudies-literature
| S-EPMC7751424 | biostudies-literature
| S-EPMC8495897 | biostudies-literature
2016-12-27 | GSE75133 | GEO
| S-EPMC3926311 | biostudies-literature
| S-EPMC5411068 | biostudies-literature
| S-EPMC7139734 | biostudies-literature
2024-05-03 | GSE252776 | GEO