Unknown

Dataset Information

0

Electron Transfer and Electron Excitation Processes in 2,5-Diaminoterephthalate Derivatives with Broad Scope for Functionalization.


ABSTRACT: Derivatives of 2,5-diaminoterephthalate (DAT) are efficient fluorescence dyes that are also redox-active, thus allowing for the electrochemical manipulation of spectral properties. The electrochemical behaviour of seven DAT derivatives was studied by cyclic voltammetry in dichloromethane. In the absence of a proton donor, DATs should be oxidized in two one-electron steps. The first step is usually quasi-reversible while the second step is either quasi-reversible or irreversible. Some electrochemical properties such as the formal potentials and the ratio between the anodic and the cathodic current were determined from the cyclic voltammograms. Correlation between the formal potential of first oxidation and the absorption or the fluorescence emission wavelengths are established for this specific type of dyes. These correlations were confirmed with density functional theory calculations.

SUBMITTER: Markovic A 

PROVIDER: S-EPMC6718077 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electron Transfer and Electron Excitation Processes in 2,5-Diaminoterephthalate Derivatives with Broad Scope for Functionalization.

Markovic Aleksandra A   Buschbeck Leon L   Klüner Thorsten T   Christoffers Jens J   Wittstock Gunther G  

ChemistryOpen 20190702 9


Derivatives of 2,5-diaminoterephthalate (DAT) are efficient fluorescence dyes that are also redox-active, thus allowing for the electrochemical manipulation of spectral properties. The electrochemical behaviour of seven DAT derivatives was studied by cyclic voltammetry in dichloromethane. In the absence of a proton donor, DATs should be oxidized in two one-electron steps. The first step is usually quasi-reversible while the second step is either quasi-reversible or irreversible. Some electrochem  ...[more]

Similar Datasets

| S-EPMC3776592 | biostudies-literature
| S-EPMC7756729 | biostudies-literature
| S-EPMC8159437 | biostudies-literature
| S-EPMC3102414 | biostudies-literature
| S-EPMC5264216 | biostudies-literature
| S-EPMC7756474 | biostudies-literature
| S-EPMC4558538 | biostudies-literature
| S-EPMC5434924 | biostudies-literature
| S-EPMC6438127 | biostudies-literature
| S-EPMC8288372 | biostudies-literature