Project description:Pulmonary infections with nontuberculous mycobacteria (NTM) are increasingly prevalent in people with cystic fibrosis (CF). Clinical outcomes following NTM acquisition are highly variable, ranging from transient self-resolving infection to NTM pulmonary disease associated with significant morbidity. Relationships between airway microbiota and variability of NTM outcomes in CF are unclear. To identify features of CF airway microbiota associated with outcomes of NTM infection. 188 sputum samples, obtained from 24 subjects with CF, each with three or more samples collected from 3.5 years prior to, and up to 6 months following incident NTM infection, were selected from a sample repository. Sputum DNA underwent bacterial 16S rRNA gene sequencing. Airway microbiota were compared based on the primary outcome, a diagnosis of NTM pulmonary disease, using Wilcoxon rank-sum testing, autoregressive integrated moving average modelling and network analyses. Subjects with and without NTM pulmonary disease were similar in clinical characteristics, including age and lung function at the time of incident NTM infection. Time-series analyses of sputum samples prior to incident NTM infection identified positive correlations between Pseudomonas, Streptococcus, Veillonella, Prevotella and Rothia with diagnosis of NTM pulmonary disease and with persistent NTM infection. Network analyses identified differences in clustering of taxa between subjects with and without NTM pulmonary disease, and between subjects with persistent versus transient NTM infection. CF airway microbiota prior to incident NTM infection are associated with subsequent outcomes, including diagnosis of NTM pulmonary disease, and persistence of NTM infection. Associations between airway microbiota and NTM outcomes represent targets for validation as predictive markers and for future therapies.
Project description:BackgroundThe prevalence of fungal disease in cystic fibrosis (CF) and non-CF bronchiectasis is increasing and the clinical spectrum is widening. Poor sensitivity and a lack of standard diagnostic criteria renders interpretation of culture results challenging. In order to develop effective management strategies, a more accurate and comprehensive understanding of the airways fungal microbiome is required. The study aimed to use DNA sequences from sputum to assess the load and diversity of fungi in adults with CF and non-CF bronchiectasis.MethodsNext generation sequencing of the ITS2 region was used to examine fungal community composition (n = 176) by disease and underlying clinical subgroups including allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, non-tuberculous mycobacteria, and fungal bronchitis. Patients with no known active fungal disease were included as disease controls.ResultsITS2 sequencing greatly increased the detection of fungi from sputum. In patients with CF fungal diversity was lower, while burden was higher than those with non-CF bronchiectasis. The most common operational taxonomic unit (OTU) in patients with CF was Candida parapsilosis (20.4%), whereas in non-CF bronchiectasis sputum Candida albicans (21.8%) was most common. CF patients with overt fungal bronchitis were dominated by Aspergillus spp., Exophiala spp., Candida parapsilosis or Scedosporium spp.ConclusionThis study provides a framework to more accurately characterize the extended spectrum of fungal airways diseases in adult suppurative lung diseases.
Project description:BackgroundMolecular techniques have uncovered vast numbers of organisms in the cystic fibrosis (CF) airways, the clinical significance of which is yet to be determined. The aim of this study was to describe and compare the microbial communities of the lower airway of clinically stable children with CF and children without CF.MethodsBronchoalveolar lavage (BAL) fluid and paired oropharyngeal swabs from clinically stable children with CF (n = 13) and BAL from children without CF (n = 9) were collected. DNA was isolated, the 16S rRNA regions amplified, fragmented, biotinylated and hybridised to a 16S rRNA microarray. Patient medical and demographic information was recorded and standard microbiological culture was performed.ResultsA diverse bacterial community was detected in the lower airways of children with CF and children without CF. The airway microbiome of clinically stable children with CF and children without CF were significantly different as measured by Shannon's Diversity Indices (p = 0.001; t test) and Principle coordinate analysis (p = 0.01; Adonis test). Overall the CF airway microbial community was more variable and had a less even distribution than the microbial community in the airways of children without CF. We highlighted several bacteria of interest, particularly Prevotella veroralis, CW040 and a Corynebacterium, which were of significantly differential abundance between the CF and non-CF lower airways. Both Pseudomonas aeruginosa and Streptococcus pneumoniae culture abundance were found to be associated with CF airway microbial community structure. The CF upper and lower airways were found to have a broadly similar microbial milieu.ConclusionThe microbial communities in the lower airways of stable children with CF and children without CF show significant differences in overall diversity. These discrepancies indicate a disruption of the airway microflora occurring early in life in children with CF.
Project description:In cystic fibrosis (CF), conventional antibiotic susceptibility results correlate poorly with clinical outcomes. We hypothesized that biofilm testing would more accurately reflect the susceptibilities of bacteria infecting CF airways.A multicenter randomized pilot trial was conducted to assess the efficacy and safety of using biofilm susceptibility testing of Pseudomonas aeruginosa sputum isolates to guide antibiotic regimens for chronic airway infections in clinically stable adolescent and adult CF patients. Thirty-nine participants were randomized to biofilm or conventional treatment groups; 14-day courses of two antibiotics were selected according to an activity-based algorithm using the corresponding susceptibility results.Of the agents tested, meropenem was most active against biofilm-grown bacteria, and was included in regimens for about half of each study group. For 19 of 39 randomized participants, randomization to the other study group would not have changed the antibiotic classes of the assigned regimen. Study groups were comparable at baseline, and had similar mean decreases in bacterial density, measured in log(10) colony forming units per gram of sputum (biofilm, -2.94 [SD 2.83] vs. conventional, -3.27 [SD 3.09]), and mean increases in forced expiratory volume in 1?sec, measured in liters (0.18 [SD 0.20] vs. 0.12 [SD 0.22]).In this pilot study, antibiotic regimens based on biofilm testing did not differ significantly from regimens based on conventional testing in terms of microbiological and clinical responses. The predictive value of biofilm testing may nonetheless warrant evaluation in an adequately powered clinical trial in younger CF patients or those experiencing acute pulmonary exacerbation.
Project description:RationaleFosfomycin/tobramycin for inhalation (FTI), a unique, broad-spectrum antibiotic combination, may have therapeutic potential for patients with cystic fibrosis (CF).ObjectivesTo evaluate safety and efficacy of FTI (160/40 mg or 80/20 mg), administered twice daily for 28 days versus placebo, in patients greater than or equal to 18 years of age, with CF, chronic Pseudomonas aeruginosa (PA) airway infection, and FEV(1) greater than or equal to 25% and less than or equal to 75% predicted.MethodsThis double-blind, placebo-controlled, multicenter study assessed whether FTI/placebo maintained FEV(1) % predicted improvements achieved following a 28-day, open-label, run-in course of aztreonam for inhalation solution (AZLI).Measurements and main resultsA total of 119 patients were randomized to FTI (160/40 mg: n = 41; 80/20 mg: n = 38) or placebo (n = 40). Mean age was 32 years and mean FEV(1) was 49% predicted at screening. Relative improvements in FEV(1) % predicted achieved by the AZLI run-in were maintained in FTI groups compared with placebo (160/40 mg vs. placebo: 6.2% treatment difference favoring FTI, P = 0.002 [primary endpoint]; 80/20 mg vs. placebo: 7.5% treatment difference favoring FTI, P < 0.001). The treatment effect on mean PA sputum density was statistically significant for the FTI 80/20 mg group versus placebo (-1.04 log(10) PA colony-forming units/g sputum difference, favoring FTI; P = 0.01). Adverse events, primarily cough, were consistent with CF disease. Respiratory events, including dyspnea and wheezing, were less common with FTI 80/20 mg than FTI 160/40 mg. No clinically significant differences between groups were reported for laboratory values.ConclusionsFTI maintained the substantial improvements in FEV(1) % predicted achieved during the AZLI run-in and was well tolerated. FTI is a promising antipseudomonal therapy for patients with CF.
Project description:Early-life viral infections are responsible for pulmonary exacerbations that can contribute to disease progression in young children with cystic fibrosis (CF). The most common respiratory viruses detected in the CF airway are human rhinoviruses (RV), and augmented airway inflammation in CF has been attributed to dysregulated airway epithelial responses although evidence has been conflicting. Here, we exposed airway epithelial cells from children with and without CF to RV in vitro. Using RNA-Seq, we profiled the transcriptomic differences of CF and non-CF airway epithelial cells at baseline and in response to RV. There were only modest differences between CF and non-CF cells at baseline. In response to RV, there were 1,442 and 896 differentially expressed genes in CF and non-CF airway epithelial cells, respectively. The core antiviral responses in CF and non-CF airway epithelial cells were mediated through interferon signaling although type 1 and 3 interferon signaling, when measured, were reduced in CF airway epithelial cells following viral challenge consistent with previous reports. The transcriptional responses in CF airway epithelial cells were more complex than in non-CF airway epithelial cells with diverse over-represented biological pathways, such as cytokine signaling and metabolic and biosynthetic pathways. Network analysis highlighted that the differentially expressed genes of CF airway epithelial cells' transcriptional responses were highly interconnected and formed a more complex network than observed in non-CF airway epithelial cells. We corroborate observations in fully differentiated air-liquid interface (ALI) cultures, identifying genes involved in IL-1 signaling and mucin glycosylation that are only dysregulated in the CF airway epithelial response to RV infection. These data provide novel insights into the CF airway epithelial cells' responses to RV infection and highlight potential pathways that could be targeted to improve antiviral and anti-inflammatory responses in CF.
Project description:Lung transplantation can be lifesaving in end-stage cystic fibrosis (CF), but long-term survival is limited by chronic lung allograft dysfunction (CLAD). Persistent upper airway Pseudomonas aeruginosa (PsA) colonization can seed the allograft. While de novo PsA infection is associated with CLAD in non-CF recipients, this association is less clear for CF recipients experiencing PsA recolonization. Here, we evaluate host and pathogen contributions to this phenomenon. In the context of PsA infection, brushings from the airways of CF recipients demonstrate type 1 interferon gene suppression. Airway epithelial cell (AEC) cultures demonstrate similar findings in the absence of pathogens or immune cells, contrasting with the pre-transplant CF AEC phenotype. Type 1 interferon promoters are relatively hypermethylated in CF AECs. CF subjects in this cohort have more mucoid PsA, while non-CF PsA subjects have decreased microbiome α diversity. Peri-transplant protocols may benefit from consideration of this host and microbiome equilibrium.
Project description:Our laboratory has held a long interest in the glycosylation changes seen on the surface of airway epithelia of patients with the disease cystic fibrosis (CF). Experiments from our laboratory have detailed a CF glycosylation phenotype of increased Fuca1,3/4 and decreased Fuca1,2 and sialic acid on the surfaces of immortalized and primary CF cells compared to non-CF cells. Further, we have shown that gene transfer and subsequent expression of a wild type CF plasmid in CF airway cells results in correction or reversal of this glycosylation phenotype. We hypothesize that the changes in glycosylation seen in CF cells are key in the pathophysiology of the cystic fibrosis airway disease. For example, it has been shown that Pseudomonas aeruginosa, a bacterium that has a predilection for colonizing CF airways, adheres to asialylated glycolipids and glycoconjugates with terminal Fuca1,3/4. One focus of our laboratory is to elucidate the etiology of the glycosylation changes seen in CF cells and the mechanism by which these changes are reversed by wild type CFTR gene transfer. We propose to study the gene expression of immortalized and primary CF and non-CF airway epithelial cells: 1. CF/T43 vs. BEAS-2B cells. These are two widely used immortalized airway cell lines that we have used extensively in the past. 2. C38 cells; C38 cells are IB3 cells expressing wtCFTR. The experimental focus is to elucidate the etiology of the glycosylation changes seen in Cystic Fibrosis (CF) cells and the mechanism by which these changes are reversed by wild type CFTR gene transfer. To do so, the gene expression of immortalized and primary CF and non-CF airway epithelial cells were compared and studied. Cell lines used were CF/T43 and BEAS-2B, both widely used immortalized airway cell lines. Other cell lines studied included C38 cell lines (clonal derivatives of IB3 cells expressing wtCFTR).