Project description:The human genetics community needs robust protocols that enable secure sharing of genomic data from participants in genetic research. Beacons are web servers that answer allele-presence queries--such as "Do you have a genome that has a specific nucleotide (e.g., A) at a specific genomic position (e.g., position 11,272 on chromosome 1)?"--with either "yes" or "no." Here, we show that individuals in a beacon are susceptible to re-identification even if the only data shared include presence or absence information about alleles in a beacon. Specifically, we propose a likelihood-ratio test of whether a given individual is present in a given genetic beacon. Our test is not dependent on allele frequencies and is the most powerful test for a specified false-positive rate. Through simulations, we showed that in a beacon with 1,000 individuals, re-identification is possible with just 5,000 queries. Relatives can also be identified in the beacon. Re-identification is possible even in the presence of sequencing errors and variant-calling differences. In a beacon constructed with 65 European individuals from the 1000 Genomes Project, we demonstrated that it is possible to detect membership in the beacon with just 250 SNPs. With just 1,000 SNP queries, we were able to detect the presence of an individual genome from the Personal Genome Project in an existing beacon. Our results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori. We discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes.
Project description:Making data broadly accessible is essential to creating a medical information commons (MIC). Transparency about data-sharing practices can cultivate trust among prospective and existing MIC participants. We present an analysis of 34 initiatives sharing DNA-derived data based on public information. We describe data-sharing practices captured, including practices related to consent, privacy and security, data access, oversight, and participant engagement. Our results reveal that data-sharing initiatives have some distance to go in achieving transparency.
Project description:Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
Project description:Abstract While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank.
Project description:Growing regulatory requirements set barriers around genetic data sharing and collaborations. Moreover, existing privacy-aware paradigms are challenging to deploy in collaborative settings. We present COLLAGENE, a tool base for building secure collaborative genomic data analysis methods. COLLAGENE protects data using shared-key homomorphic encryption and combines encryption with multiparty strategies for efficient privacy-aware collaborative method development. COLLAGENE provides ready-to-run tools for encryption/decryption, matrix processing, and network transfers, which can be immediately integrated into existing pipelines. We demonstrate the usage of COLLAGENE by building a practical federated GWAS protocol for binary phenotypes and a secure meta-analysis protocol. COLLAGENE is available at https://zenodo.org/record/8125935 .
Project description:ObjectiveThe Cross-Institutional Clinical Translational Research project explored a federated query tool and looked at how this tool can facilitate clinical trial cohort discovery by managing access to aggregate patient data located within unaffiliated academic medical centers.MethodsThe project adapted software from the Informatics for Integrating Biology and the Bedside (i2b2) program to connect three Clinical Translational Research Award sites: University of Washington, Seattle, University of California, Davis, and University of California, San Francisco. The project developed an iterative spiral software development model to support the implementation and coordination of this multisite data resource.ResultsBy standardizing technical infrastructures, policies, and semantics, the project enabled federated querying of deidentified clinical datasets stored in separate institutional environments and identified barriers to engaging users for measuring utility.DiscussionThe authors discuss the iterative development and evaluation phases of the project and highlight the challenges identified and the lessons learned.ConclusionThe common system architecture and translational processes provide high-level (aggregate) deidentified access to a large patient population (>5 million patients), and represent a novel and extensible resource. Enhancing the network for more focused disease areas will require research-driven partnerships represented across all partner sites.
Project description:As sequencing prices drop, genomic data accumulates-seemingly at a steadily increasing pace. Most genomic data potentially have value beyond the initial purpose-but only if shared with the scientific community. This, of course, is often easier said than done. Some of the challenges in sharing genomic data include data volume (raw file sizes and number of files), complexities, formats, nomenclatures, metadata descriptions, and the choice of a repository. In this paper, we describe 10 quick tips for sharing open genomic data.
Project description:Data sharing anchors reproducible science, but expectations and best practices are often nebulous. Communities of funders, researchers and publishers continue to grapple with what should be required or encouraged. To illuminate the rationales for sharing data, the technical challenges and the social and cultural challenges, we consider the stakeholders in the scientific enterprise. In biomedical research, participants are key among those stakeholders. Ethical sharing requires considering both the value of research efforts and the privacy costs for participants. We discuss current best practices for various types of genomic data, as well as opportunities to promote ethical data sharing that accelerates science by aligning incentives.
Project description:We present the Canadian Distributed Infrastructure for Genomics (CanDIG) platform, which enables federated querying and analysis of human genomics and linked biomedical data. CanDIG leverages the standards and frameworks of the Global Alliance for Genomics and Health (GA4GH) and currently hosts data for five pan-Canadian projects. We describe CanDIG's key design decisions and features as a guide for other federated data systems.
Project description:The sharing of genomic data holds great promise in advancing precision medicine and providing personalized treatments and other types of interventions. However, these opportunities come with privacy concerns, and data misuse could potentially lead to privacy infringement for individuals and their blood relatives. With the rapid growth and increased availability of genomic datasets, understanding the current genome privacy landscape and identifying the challenges in developing effective privacy-protecting solutions are imperative. In this work, we provide an overview of major privacy threats identified by the research community and examine the privacy challenges in the context of emerging direct-to-consumer genetic-testing applications. We additionally present general privacy-protection techniques for genomic data sharing and their potential applications in direct-to-consumer genomic testing and forensic analyses. Finally, we discuss limitations in current privacy-protection methods, highlight possible mitigation strategies and suggest future research opportunities for advancing genomic data sharing.