Unknown

Dataset Information

0

Mathematical modelling of the restenosis process after stent implantation.


ABSTRACT: The stenting procedure has evolved to become a highly successful technique for the clinical treatment of advanced atherosclerotic lesions in arteries. However, the development of in-stent restenosis remains a key problem. In this work, a novel two-dimensional continuum mathematical model is proposed to describe the complex restenosis process following the insertion of a stent into a coronary artery. The biological species considered to play a key role in restenosis development are growth factors, matrix metalloproteinases, extracellular matrix, smooth muscle cells and endothelial cells. Diffusion-reaction equations are used for modelling the mass balance between species in the arterial wall. Experimental data from the literature have been used in order to estimate model parameters. Moreover, a sensitivity analysis has been performed to study the impact of varying the parameters of the model on the evolution of the biological species. The results demonstrate that this computational model qualitatively captures the key characteristics of the lesion growth and the healing process within an artery subjected to non-physiological mechanical forces. Our results suggest that the arterial wall response is driven by the damage area, smooth muscle cell proliferation and the collagen turnover among other factors.

SUBMITTER: Escuer J 

PROVIDER: S-EPMC6731499 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mathematical modelling of the restenosis process after stent implantation.

Escuer Javier J   Martínez Miguel A MA   McGinty Sean S   Peña Estefanía E  

Journal of the Royal Society, Interface 20190814 157


The stenting procedure has evolved to become a highly successful technique for the clinical treatment of advanced atherosclerotic lesions in arteries. However, the development of in-stent restenosis remains a key problem. In this work, a novel two-dimensional continuum mathematical model is proposed to describe the complex restenosis process following the insertion of a stent into a coronary artery. The biological species considered to play a key role in restenosis development are growth factors  ...[more]

Similar Datasets

| S-EPMC6149617 | biostudies-literature
| S-EPMC6281823 | biostudies-other
| S-EPMC4184901 | biostudies-literature
| S-EPMC4361545 | biostudies-literature
2021-09-04 | GSE182225 | GEO
| S-EPMC9750080 | biostudies-literature
| S-EPMC2846184 | biostudies-literature
| S-EPMC4060168 | biostudies-other
| S-EPMC11308135 | biostudies-literature
2014-09-02 | GSE60959 | GEO