Unknown

Dataset Information

0

Oncogenic MYC amplifies mitotic perturbations.


ABSTRACT: The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multiple aspects of mitotic chromosome segregation. Cells overexpressing MYC have altered spindle morphology, take longer to align their chromosomes at metaphase and enter anaphase sooner. When challenged with a variety of anti-mitotic drugs, cells overexpressing MYC display more anomalies, the net effect of which is increased micronuclei, a hallmark of chromosome instability. Proteomic analysis showed that MYC modulates multiple networks predicted to influence mitosis, with the mitotic kinase PLK1 identified as a central hub. In turn, we show that MYC modulates several PLK1-dependent processes, namely mitotic entry, spindle assembly and SAC satisfaction. These observations thus underpin the pervasive nature of oncogenic MYC and provide a mechanistic rationale for MYC's ability to drive chromosome instability.

SUBMITTER: Littler S 

PROVIDER: S-EPMC6731591 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oncogenic MYC amplifies mitotic perturbations.

Littler Samantha S   Sloss Olivia O   Geary Bethany B   Pierce Andrew A   Whetton Anthony D AD   Taylor Stephen S SS  

Open biology 20190828 8


The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multip  ...[more]

Similar Datasets

| S-EPMC4944194 | biostudies-literature
| S-EPMC5172227 | biostudies-literature
| S-EPMC2080907 | biostudies-other
| S-EPMC8849550 | biostudies-literature
| S-EPMC5993822 | biostudies-other
| S-EPMC3593888 | biostudies-other
| S-EPMC4518499 | biostudies-literature
| S-EPMC3370078 | biostudies-literature
| S-EPMC4669520 | biostudies-literature
| S-EPMC4621998 | biostudies-literature