Unknown

Dataset Information

0

Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning.


ABSTRACT: PURPOSE:Deep learning is an emerging technique that allows us to capture imaging information beyond the visually recognizable level of a human being. Because of the anatomic characteristics and location, on-board target verification for radiation delivery to pancreatic tumors is a challenging task. Our goal was to use a deep neural network to localize the pancreatic tumor target on kV x-ray images acquired using an on-board imager for image guided radiation therapy. METHODS AND MATERIALS:The network is set up in such a way that the input is either a digitally reconstructed radiograph image or a monoscopic x-ray projection image acquired by the on-board imager from a given direction, and the output is the location of the planning target volume in the projection image. To produce a sufficient number of training x-ray images reflecting the vast number of possible clinical scenarios of anatomy distribution, a series of changes were introduced to the planning computed tomography images, including deformation, rotation, and translation, to simulate inter- and intrafractional variations. After model training, the accuracy of the model was evaluated by retrospectively studying patients who underwent pancreatic cancer radiation therapy. Statistical analysis using mean absolute differences (MADs) and Lin's concordance correlation coefficient were used to assess the accuracy of the predicted target positions. RESULTS:MADs between the model-predicted and the actual positions were found to be less than 2.60 mm in anteroposterior, lateral, and oblique directions for both axes in the detector plane. For comparison studies with and without fiducials, MADs are less than 2.49 mm. For all cases, Lin's concordance correlation coefficients between the predicted and actual positions were found to be better than 93%, demonstrating the success of the proposed deep learning for image guided radiation therapy. CONCLUSIONS:We demonstrated that markerless pancreatic tumor target localization is achievable with high accuracy by using a deep learning technique approach.

SUBMITTER: Zhao W 

PROVIDER: S-EPMC6732032 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning.

Zhao Wei W   Shen Liyue L   Han Bin B   Yang Yong Y   Cheng Kai K   Toesca Diego A S DAS   Koong Albert C AC   Chang Daniel T DT   Xing Lei L  

International journal of radiation oncology, biology, physics 20190613 2


<h4>Purpose</h4>Deep learning is an emerging technique that allows us to capture imaging information beyond the visually recognizable level of a human being. Because of the anatomic characteristics and location, on-board target verification for radiation delivery to pancreatic tumors is a challenging task. Our goal was to use a deep neural network to localize the pancreatic tumor target on kV x-ray images acquired using an on-board imager for image guided radiation therapy.<h4>Methods and materi  ...[more]

Similar Datasets

| S-EPMC7566625 | biostudies-literature
| S-EPMC8273385 | biostudies-literature
| S-EPMC11310081 | biostudies-literature
| S-EPMC9990908 | biostudies-literature
| S-EPMC7307703 | biostudies-literature
| S-EPMC9322512 | biostudies-literature
| S-EPMC7846585 | biostudies-literature
| S-EPMC8948574 | biostudies-literature
| S-EPMC11019838 | biostudies-literature
| S-EPMC8930987 | biostudies-literature