Comparison of the reactivation rates of acetylcholinesterase modified by structurally different organophosphates using novel pyridinium oximes.
Ontology highlight
ABSTRACT: A novel panel of oximes were synthesized, which have displayed varying degree of reactivation ability towards different organophosphorus (OP) modified cholinesterases. In the present article, we report a comparative reactivation profile of a series of quaternary pyridinium-oximes for electric eel acetylcholinesterase (EEAChE) inhibited by the organophosphorus (OP) inhibitors methyl paraoxon (MePOX), ethyl paraoxon (POX; paraoxon) and diisopropyl fluorophosphate (DFP) that are distinguishable as dimethoxyphosphoryl, diethoxyphosphoryl and diisopropoxyphosphoryl AChE-OP-adducts. Most of the 59-oximes tested led to faster and more extensive reactivation of MePOX- and POX-inhibited EEAChE as compared to DFP-modified EEAChE. All were effective reactivators of three OP-modified EEAChE conjugates showing 18-21% reactivation for DFP-inhibited AChE and ?45% reactivation for MePOX- and POX-inhibited EEAChE. Oximes 7 and 8 showed kr values better than pralidoxime (1) for DFP-inhibited EEAChE. Reactivation rates determined at different inhibition times showed no significant change in kr values during 0-90?min incubation with three OPs. However, a 34-72% decrease in kr for MePOX and POX and > 95% decrease in kr for DFP-inhibited EEAChE was observed after 24?h of OP-exposure (aging).
SUBMITTER: Bharate SB
PROVIDER: S-EPMC6736693 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA