Project description:BackgroundDue to the recent increased use of the McMaster (MM) fecal egg counting method for assessing benzimidazole drug efficacy for treating soil-transmitted helminth (STH) infections, the aim of the current study was to determine the operational value of including the MM method alongside the Kato-Katz (KK) fecal thick smear to increase the diagnostic sensitivity when STHs are co-endemic with trematode helminths (e.g., Schistosoma mansoni).MethodsA cross-sectional study was conducted in school-aged children aged 4-18 years in the northeastern region of the State of Minas Gerais (Brazil), where Necator americanus, Ascaris lumbricoides, Trichuris trichiura, and S. mansoni are co-endemic. One fecal sample from each participant was collected and transported to the field laboratory for analysis. Coprological diagnosis was performed on each fecal sample by three different methods: Formalin-Ether Sedimentation (FES), KK and the MM technique. The diagnostic sensitivity and negative predictive value (NPV) of each technique was calculated using the combination of all three techniques as the composite standard. In order to determine the agreement between the three techniques Fleiss´ kappa was used. Both the Cure Rate (CR) and the Fecal Egg Count Reduction (FECR) were calculated using the two quantification techniques (i.e., the MM and KK).ResultsFecal samples from 1260 children were analyzed. The KK had higher diagnostic sensitivity than the MM for the detection of both A. lumbricoides (KK 97.3%, MM 69.5%) and hookworm (KK 95.1%, MM 80.8%). The CR of a single dose of mebendazole varied significantly between the KK and MM for both A. lumbricoides (p = 0.016) and hookworm (p = 0.000), with lower rates obtained with the KK. On the other hand, the FECR was very similar between both techniques for both A. lumbricoides and hookworm.ConclusionThe MM did not add any diagnostic value over the KK in areas where both STHs and trematodes were co-endemic. The lower sensitivity of the MM would have an important impact on the administration of selective school-based treatment in this area since if only the MM were used, 36 (13.9%) children diagnosed with A. lumbricoides would have gone untreated.
Project description:BackgroundMalaria burden remains high in the sub-Saharan region where helminths are prevalent and where children are often infected with both types of parasites. Although the effect of helminths on malaria infection is evident, the impact of these co-infections is not clearly elucidated yet and the scarce findings are conflicting. In this study, we investigated the effect of schistosomiasis, considering soil-transmitted helminths (STH), on prevalence and incidence of Plasmodium falciparum infection.MethodologyThis longitudinal survey was conducted in school-age children living in two rural communities in the vicinity of Lambaréné, Gabon. Thick blood smear light microscopy, urine filtration and the Kato-Katz technique were performed to detect malaria parasites, S. haematobium eggs and, STH eggs, respectively. P. falciparum carriage was assessed at inclusion, and incidence of malaria and time to the first malaria event were recorded in correlation with Schistosoma carriage status. Stratified multivariate analysis using generalized linear model was used to assess the risk of plasmodium infection considering interaction with STH, and survival analysis to assess time to malaria.Main findingsThe overall prevalence on subject enrolment was 30%, 23% and 9% for S. haematobium, P. falciparum infections and co-infection with both parasites, respectively. Our results showed that schistosomiasis in children tends to increase the risk of plasmodium infection but a combined effect with Trichuris trichiura or hookworm infection clearly increase the risk (aOR = 3.9 [95%CI: 1.7-9.2]). The incidence of malaria over time was 0.51[95%CI: 0.45-0.57] per person-year and was higher in the Schistosoma-infected group compared to the non-infected group (0.61 vs 0.43, p = 0.02), with a significant delay of time-to first-malaria event only in children aged from 6 to 10-years-old infected with Schistosoma haematobium.ConclusionsOur results suggest that STH enhance the risk for P. falciparum infection in schistosomiasis-positive children, and when infected, that schistosomiasis enhances susceptibility to developing malaria in young children but not in older children.
Project description:Intestinal parasites affect millions of children globally. We aimed to assess effects of deworming children on nutritional and cognitive outcomes across potential effect modifiers using individual participant data (IPD). We searched multiple databases to 27 March 2018, grey literature, and other sources. We included randomised and quasi randomised trials of deworming compared to placebo or other nutritional interventions with data on baseline infection. We used a random-effects network meta-analysis with IPD and assessed overall quality, following a pre-specified protocol. We received IPD from 19 trials of STH deworming. Overall risk of bias was low. There were no statistically significant subgroup effects across age, sex, nutritional status or infection intensity for each type of STH. These analyses showed that children with moderate or heavy intensity infections, deworming for STH may increase weight gain (very low certainty). The added value of this review is an exploration of effects on growth and cognition in children with moderate to heavy infections as well as replicating prior systematic review results of small effects at the population level. Policy implications are that complementary public health strategies need to be assessed and considered to achieve growth and cognition benefits for children in helminth endemic areas.
Project description:BACKGROUND:Appropriate health and nutrition interventions to prevent long-term adverse effects in children are necessary before two years of age. One such intervention may include population-based deworming, recommended as of 12 months of age by the World Health Organization in soil-transmitted helminth (STH)-endemic areas; however, the benefit of deworming has been understudied in early preschool-age children. METHODOLOGY/PRINCIPAL FINDINGS:A randomized, double-blind, placebo-controlled trial was conducted to determine the effect of deworming (500 mg single-dose crushed mebendazole tablet) on growth in one-year-old children in Iquitos, Peru. Children were enrolled during their routine 12-month growth and development clinic visit and followed up at their 18 and 24-month visits. Children were randomly allocated to: Group 1: deworming at 12 months and placebo at 18 months; Group 2: placebo at 12 months and deworming at 18 months; Group 3: deworming at both 12 and 18 months; or Group 4: placebo at both 12 and 18 months (i.e. control group). The primary outcome was weight gain at the 24-month visit. An intention-to-treat approach was used. A total of 1760 children were enrolled between September 2011 and June 2012. Follow-up of 1563 children (88.8%) was completed by July 2013. STH infection was of low prevalence and predominantly light intensity in the study population. All groups gained between 1.93 and 2.05 kg on average over 12 months; the average difference in weight gain (kg) compared to placebo was: 0.05 (95% CI: -0.05, 0.17) in Group 1; -0.07 (95%CI: -0.17, 0.04) in Group 2; and 0.04 (95%CI: -0.06, 0.14) in Group 3. There was no statistically significant difference in weight gain in any of the deworming intervention groups compared to the control group. CONCLUSIONS:Overall, with one year of follow-up, no effect of deworming on growth could be detected in this population of preschool-age children. Low baseline STH prevalence and intensity and/or access to deworming drugs outside of the trial may have diluted the potential effect of the intervention. Additional research is required to overcome these challenges and to contribute to strengthening the evidence base on deworming. TRIAL REGISTRATION:ClinicalTrials.gov (NCT01314937).
Project description:BackgroundRobust reference values for fecal egg count reduction (FECR) rates of the most widely used anthelmintic drugs in preventive chemotherapy (PC) programs for controlling soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura, and hookworm) are still lacking. However, they are urgently needed to ensure detection of reduced efficacies that are predicted to occur due to growing drug pressure. Here, using a standardized methodology, we assessed the FECR rate of a single oral dose of mebendazole (MEB; 500 mg) against STHs in six trials in school children in different locations around the world. Our results are compared with those previously obtained for similarly conducted trials of a single oral dose of albendazole (ALB; 400 mg).MethodologyThe efficacy of MEB, as assessed by FECR, was determined in six trials involving 5,830 school children in Brazil, Cambodia, Cameroon, Ethiopia, United Republic of Tanzania, and Vietnam. The efficacy of MEB was compared to that of ALB as previously assessed in 8,841 school children in India and all the above-mentioned study sites, using identical methodologies.Principal findingsThe estimated FECR rate [95% confidence interval] of MEB was highest for A. lumbricoides (97.6% [95.8; 99.5]), followed by hookworm (79.6% [71.0; 88.3]). For T. trichiura, the estimated FECR rate was 63.1% [51.6; 74.6]. Compared to MEB, ALB was significantly more efficacious against hookworm (96.2% [91.1; 100], p<0.001) and only marginally, although significantly, better against A. lumbricoides infections (99.9% [99.0; 100], p = 0.012), but equally efficacious for T. trichiura infections (64.5% [44.4; 84.7], p = 0.906).Conclusions/significanceA minimum FECR rate of 95% for A. lumbricoides, 70% for hookworm, and 50% for T. trichiura is expected in MEB-dependent PC programs. Lower FECR results may indicate the development of potential drug resistance.
Project description:BackgroundThe three major soil-transmitted helminths (STH) Ascaris lumbricoides, Trichuris trichiura and Necator americanus/Ancylostoma duodenale are among the most widespread parasites worldwide. Despite the global expansion of preventive anthelmintic treatment, standard operating procedures to monitor anthelmintic drug efficacy are lacking. The objective of this study, therefore, was to define the efficacy of a single 400 milligram dose of albendazole (ALB) against these three STH using a standardized protocol.Methodology/principal findingsSeven trials were undertaken among school children in Brazil, Cameroon, Cambodia, Ethiopia, India, Tanzania and Vietnam. Efficacy was assessed by the Cure Rate (CR) and the Fecal Egg Count Reduction (FECR) using the McMaster egg counting technique to determine fecal egg counts (FEC). Overall, the highest CRs were observed for A. lumbricoides (98.2%) followed by hookworms (87.8%) and T. trichiura (46.6%). There was considerable variation in the CR for the three parasites across trials (country), by age or the pre-intervention FEC (pre-treatment). The latter is probably the most important as it had a considerable effect on the CR of all three STH. Therapeutic efficacies, as reflected by the FECRs, were very high for A. lumbricoides (99.5%) and hookworms (94.8%) but significantly lower for T. trichiura (50.8%), and were affected to different extents among the 3 species by the pre-intervention FEC counts and trial (country), but not by sex or age.Conclusions/significanceOur findings suggest that a FECR (based on arithmetic means) of >95% for A. lumbricoides and >90% for hookworms should be the expected minimum in all future surveys, and that therapeutic efficacy below this level following a single dose of ALB should be viewed with concern in light of potential drug resistance. A standard threshold for efficacy against T. trichiura has yet to be established, as a single-dose of ALB is unlikely to be satisfactory for this parasite.Trial registrationClinicalTrials.gov NCT01087099.
Project description:The 2012 London declaration which committed to "sustaining, expanding and extending drug access programmes to ensure the necessary supply of drugs and other interventions to help control soil-transmitted helminths (STH) by 2020" has seen many countries in Africa roll out mass drug administration (MDA) especially among school age children. In Kenya, however, during the National school-based deworming exercise, pre-school aged children (PSAC) have to access treatment at primary schools as the pre-school teachers are not trained to carry out deworming. With studies being conducted on the effectiveness of MDAs, the experiences of key education stakeholders which could improve the programme by giving best practices, and challenges experienced have not been documented.This was a cross-sectional qualitative study using Focus group discussions (FGDs) and Key informant interviews (KIIs). It was conducted in 4 sub-counties with high STH prevalence at the Kenyan coast (Matuga, Malindi, Lunga Lunga and Msambweni) to understand best practices for implementing MDA among PSAC.FGDs categorized by gender were conducted among local community members, whereas KIIs involved pre-school teachers, primary school teachers, community health extension workers (CHEWs) and opinion leaders. Participants were purposefully selected with the saturation model determining the number of interviews and focus groups. Voice data collected was transcribed verbatim then coded and analyzed using ATLAS.Ti version 6.Majority of the primary school teachers and CHEWs reported that they were satisfied with the method of mobilization used and the training tools. This was however not echoed by the pre-school teachers, parents and chiefs who complained of being left out of the process. Best practices mentioned included timely drug delivery, support from pre-school teachers, and management of side effects. Overcrowding during the drug administration day, complexity of the forms (for instance the 'S form') and long distance between schools were mentioned as challenges.There is need to utilize better sensitization methods to include the local administration as well as the parents for better uptake of the drugs. Extending deworming training to pre-school teachers will enhance the national deworming programme.
Project description:BackgroundRegular preventive chemotherapy (PCT) targeting high-risk populations is an effective way to control STH in the short term, but sustainable long-term STH control is expected to require improved access to water, sanitation, and hygiene (WASH). However, experimental studies have not been able to conclusively demonstrate the benefit of WASH in preventing STH (re-)infections. We investigated the impact of WASH on STH infections during and after PCT using mathematical modelling.Methods and findingsWe use the individual-based transmission model WORMSIM to predict the short and long-term impact of WASH on STH transmission in contexts with and without PCT. We distinguish two WASH modalities: sanitation, which reduces individuals' contributions to environmental contamination; and hygiene, which reduces individuals' exposure to infection. We simulate the impact of varying levels of uptake and effectiveness of each WASH modality, as well as their combined impact. Clearly, sanitation and hygiene interventions have little observable short-term impact on STH infections levels in the context of PCT. However, in the long term, both are pivotal to sustain control or eliminate infection levels after scaling down or stopping PCT. The impact of hygiene is determined more by the effectiveness of the intervention than its overall uptake, whereas the impact of sanitation depends more directly on the product of uptake and the effectiveness.InterpretationThe impact of WASH interventions on STH transmission highly depends on the worm species, WASH modality, and uptake and effectiveness of the intervention. Also, the impact of WASH is difficult to measure in the context of ongoing PCT programmes. Still, we show a clear added benefit of WASH to sustain the gains made by PCT in the long term, such that PCT may be scaled down or even stopped altogether. To safely stop or scale down PCT, policy for WASH and PCT should be integrated.