Unknown

Dataset Information

0

Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence.


ABSTRACT: BACKGROUND:In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in which genes are represented by nodes and the associations between genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More specifically, the present study sought to measure gene-gene associations by using the coefficient of intrinsic dependence (CID) to capture more nonlinear as well as cause-effect gene relationships. RESULTS:A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated genes. The inferred regulatory pathways were verified through literature reviews. CONCLUSIONS:The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology.

SUBMITTER: Liu LD 

PROVIDER: S-EPMC6738364 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence.

Liu Li-Yu Daisy LD   Hsiao Ya-Chun YC   Chen Hung-Chi HC   Yang Yun-Wei YW   Chang Men-Chi MC  

Botanical studies 20190911 1


<h4>Background</h4>In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in w  ...[more]

Similar Datasets

| S-EPMC3597597 | biostudies-literature
| S-EPMC4595991 | biostudies-literature
| S-EPMC3228453 | biostudies-literature
| S-EPMC3231811 | biostudies-literature
| S-EPMC4021103 | biostudies-literature
| S-EPMC2041979 | biostudies-literature
| S-EPMC7248367 | biostudies-literature
| S-EPMC2690838 | biostudies-literature
| S-EPMC4384829 | biostudies-other
| S-EPMC8660777 | biostudies-literature