Ontology highlight
ABSTRACT: Background
Schistosomiasis is a harmful neglected tropical disease caused by infection with Schistosoma spp., such as Schistosoma mansoni. Schistosoma must transition within a molluscan host to survive. Chemical analyses of schistosome-molluscan interactions indicate that host identification involves chemosensation, including naïve host preference. Proteomic technique advances enable sophisticated comparative analyses between infected and naïve snail host proteins. This study aimed to compare resistant, susceptible and naïve Biomphalaria glabrata snail-conditioned water (SCW) to identify potential attractants and deterrents.Methods
Behavioural bioassays were performed on S. mansoni miracidia to compare the effects of susceptible, F1 resistant and naïve B. glabrata SCW. The F1 resistant and susceptible B. glabrata SCW excretory-secretory proteins (ESPs) were fractionated using SDS-PAGE, identified with LC-MS/MS and compared to naïve snail ESPs. Protein-protein interaction (PPI) analyses based on published studies (including experiments, co-expression, text-mining and gene fusion) identified S. mansoni and B. glabrata protein interaction. Data are available via ProteomeXchange with identifier PXD015129.Results
A total of 291, 410 and 597 ESPs were detected in the susceptible, F1 resistant and naïve SCW, respectively. Less overlap in ESPs was identified between susceptible and naïve snails than F1 resistant and naïve snails. F1 resistant B. glabrata ESPs were predominately associated with anti-pathogen activity and detoxification, such as leukocyte elastase and peroxiredoxin. Susceptible B. glabrata several proteins correlated with immunity and anti-inflammation, such as glutathione S-transferase and zinc metalloproteinase, and S. mansoni sporocyst presence. PPI analyses found that uncharacterised S. mansoni protein Smp_142140.1 potentially interacts with numerous B. glabrata proteins.Conclusions
This study identified ESPs released by F1 resistant, susceptible and naïve B. glabrata to explain S. mansoni miracidia interplay. Susceptible B. glabrata ESPs shed light on potential S. mansoni miracidia deterrents. Further targeted research on specific ESPs identified in this study could help inhibit B. glabrata and S. mansoni interactions and stop human schistosomiasis.
SUBMITTER: Fogarty CE
PROVIDER: S-EPMC6744689 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
Parasites & vectors 20190914 1
<h4>Background</h4>Schistosomiasis is a harmful neglected tropical disease caused by infection with Schistosoma spp., such as Schistosoma mansoni. Schistosoma must transition within a molluscan host to survive. Chemical analyses of schistosome-molluscan interactions indicate that host identification involves chemosensation, including naïve host preference. Proteomic technique advances enable sophisticated comparative analyses between infected and naïve snail host proteins. This study aimed to co ...[more]