Unknown

Dataset Information

0

Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO2 Capture by a Surface-Exposed [Fe4S4] Cluster.


ABSTRACT: Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.IMPORTANCE This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation.

SUBMITTER: Rettberg LA 

PROVIDER: S-EPMC6747716 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO<sub>2</sub> Capture by a Surface-Exposed [Fe<sub>4</sub>S<sub>4</sub>] Cluster.

Rettberg Lee A LA   Kang Wonchull W   Stiebritz Martin T MT   Hiller Caleb J CJ   Lee Chi Chung CC   Liedtke Jasper J   Ribbe Markus W MW   Hu Yilin Y  

mBio 20190709 4


Nitrogenase iron (Fe) proteins reduce CO<sub>2</sub> to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from <i>Methanosarcina acetivorans</i> (<i>Ma</i>NifH), which is generated in the presence of a reductant, dithionite, and an alternative CO<sub>2</sub> source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO<sub>2</sub> is possibly captured in an unactivated, linear conformation near the [Fe<s  ...[more]

Similar Datasets

| S-EPMC7585200 | biostudies-literature
| S-EPMC2168450 | biostudies-literature
| S-EPMC3442605 | biostudies-literature
| S-EPMC2666069 | biostudies-literature
| S-EPMC3406845 | biostudies-literature
| S-EPMC1693848 | biostudies-literature
| S-EPMC2668380 | biostudies-literature
| S-EPMC3160891 | biostudies-literature
| S-EPMC3048526 | biostudies-literature
| S-EPMC1636319 | biostudies-literature