Ontology highlight
ABSTRACT:
SUBMITTER: Amgad M
PROVIDER: S-EPMC6748796 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
Amgad Mohamed M Elfandy Habiba H Hussein Hagar H Atteya Lamees A LA Elsebaie Mai A T MAT Abo Elnasr Lamia S LS Sakr Rokia A RA Salem Hazem S E HSE Ismail Ahmed F AF Saad Anas M AM Ahmed Joumana J Elsebaie Maha A T MAT Rahman Mustafijur M Ruhban Inas A IA Elgazar Nada M NM Alagha Yahya Y Osman Mohamed H MH Alhusseiny Ahmed M AM Khalaf Mariam M MM Younes Abo-Alela F AF Abdulkarim Ali A Younes Duaa M DM Gadallah Ahmed M AM Elkashash Ahmad M AM Fala Salma Y SY Zaki Basma M BM Beezley Jonathan J Chittajallu Deepak R DR Manthey David D Gutman David A DA Cooper Lee A D LAD
Bioinformatics (Oxford, England) 20190901 18
<h4>Motivation</h4>While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images.<h4>Results</h4>We recruited 25 participants, ranging in experience from senior pathologists to medical stu ...[more]