ABSTRACT: Multistep chromatographic separations of the chloroform extract of the Turkish endemic plant Psephellus pyrrhoblepharus (Boiss.) Wagenitz (syn. Centaurea pyrrhoblephara Boiss.) resulted in the isolation of six guaianolid-type sesquiterpenes, chlorojanerin (1), 19-deoxychlorojanerin (2), 15-hydroxyjanerin (3), aguerin B (4), cynaropicrin (5), eleganin (6); three flavonoids, apigenin, 6-methoxyluteolin and jaceosidine; two glycosides, benzyl-1-O-?-d-glucoside and 3(Z)-hexenyl-1-O-?-d-glucoside; and the coumarin scopoletin. The structures were established by the interpretation of their ESI-MS and 1D and 2D NMR data including 1H-NMR, JMOD, 1H,1H-COSY, HSQC, HMBC, and NOESY experiments. All compounds were isolated for the first time from P. pyrrhoblepharus. Compounds 1-6, the isolated flavonoids and scopoletin were evaluated for their antiproliferative activities on human gynecological cancer cell lines (SiHa, HeLa, and MDA-MB-231 cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Chlorojanerin (1), 19-deoxychlorojanerin (2), aguerin B (4), cynaropicrin (5), eleganin (6) were shown to have noteworthy effects on all of the tested cell lines, while apigenin, jaceosidine, and 6-methoxyluteolin were moderately active on HeLa cells. The highest activities were demonstrated by the chlorine-containing derivatives chlorojanerin (1) and 19-deoxychlorojanerin (2) with IC50 values of 2.21 and 2.88 µM, respectively, against the triple negative breast cancer model MDA-MB-231 cells.