Unknown

Dataset Information

0

Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress.


ABSTRACT:

Background

Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measured non-structural carbohydrates and biomass of different plant organs to assess the stress-induced responses at the root, stem, and leaf level. Effects of watering on root infestation were also addressed.

Results

Higher root infestation was observed in drought-stressed plants compared to well-watered. The drought had a significant impact on most of the measured functional traits. Phylloxera further influenced vines water and carbon metabolism and enforced the sink strength of the roots by stimulating photosynthates translocation. The insect induced carbon depletion, reprogramed vine development, while preventing biomass compensation. A synergic effect of biotic-abiotic stress could be detected in several physiological and morphological traits.

Conclusions

Our results indicate that events of water shortage favour insects' feeding damage and increase the abundance of root nodosities. Root phylloxera infestation imposes a considerable stress to the plants which might exacerbate the negative effects of drought.

SUBMITTER: Savi T 

PROVIDER: S-EPMC6749654 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress.

Savi Tadeja T   García González Almudena A   Herrera Jose Carlos JC   Forneck Astrid A  

BMC plant biology 20190918 1


<h4>Background</h4>Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measur  ...[more]

Similar Datasets

| S-EPMC5496412 | biostudies-literature
| S-EPMC7956764 | biostudies-literature
| S-EPMC8236847 | biostudies-literature
| S-EPMC4751433 | biostudies-literature
| S-EPMC11291362 | biostudies-literature
| S-EPMC6201870 | biostudies-literature
| S-EPMC6241396 | biostudies-literature
| S-EPMC8840725 | biostudies-literature
| S-EPMC7485093 | biostudies-literature
| S-EPMC3728364 | biostudies-literature