Unknown

Dataset Information

0

Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation.


ABSTRACT: Intestinal epithelial cells are the first line of defense against enteric pathogens, yet bacterial pathogens, such as Listeria monocytogenes, can breach this barrier. We show that Listeria adhesion protein (LAP) induces intestinal epithelial barrier dysfunction to promote bacterial translocation. These disruptions are attributed to the production of pro-inflammatory cytokines TNF-? and IL-6, which is observed in mice challenged with WT and isogenic strains lacking the surface invasion protein Internalin A (?inlA), but not a lap- mutant. Additionally, upon engagement of its surface receptor Hsp60, LAP activates canonical NF-?B signaling, facilitating myosin light-chain kinase (MLCK)-mediated opening of the epithelial barrier via cellular redistribution of the epithelial junctional proteins claudin-1, occludin, and E-cadherin. Pharmacological inhibition of MLCK or NF-?B in cells or genetic ablation of MLCK in mice prevents mislocalization of junctional proteins and L. monocytogenes translocation. Thus, L. monocytogenes uses LAP to exploit epithelial defenses and cross the intestinal epithelial barrier.

SUBMITTER: Drolia R 

PROVIDER: S-EPMC6750208 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation.

Drolia Rishi R   Tenguria Shivendra S   Durkes Abigail C AC   Turner Jerrold R JR   Bhunia Arun K AK  

Cell host & microbe 20180405 4


Intestinal epithelial cells are the first line of defense against enteric pathogens, yet bacterial pathogens, such as Listeria monocytogenes, can breach this barrier. We show that Listeria adhesion protein (LAP) induces intestinal epithelial barrier dysfunction to promote bacterial translocation. These disruptions are attributed to the production of pro-inflammatory cytokines TNF-α and IL-6, which is observed in mice challenged with WT and isogenic strains lacking the surface invasion protein In  ...[more]

Similar Datasets

| S-EPMC3716925 | biostudies-literature
| S-EPMC2717551 | biostudies-other
| S-EPMC9280087 | biostudies-literature
| S-EPMC5198279 | biostudies-literature
| S-EPMC9640348 | biostudies-literature
| S-EPMC7165420 | biostudies-literature
| S-EPMC3548814 | biostudies-literature
| S-EPMC9258207 | biostudies-literature
| S-EPMC10121737 | biostudies-literature
| S-EPMC9204284 | biostudies-literature